首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An experiment was conducted to determine whether cooled semen quality could be maintained for a longer interval by conducting daily centrifugation of extended semen, with resuspension of the sperm pellet in fresh extender. Semen treatments included SP10NC and SP50NC which contained 10 and 50% seminal plasma, respectively, were not centrifuged (NC), and were stored at 4 to 7 °C for 96 h. Treatments SP10C and SP50C contained 10 and 50% seminal plasma, respectively, but were centrifuged (C) after 24, 48, and 72 h of cooled storage, with daily resuspension in fresh extender containing 10% seminal plasma. Percent total sperm motility (TMOT) and progressively motile (PMOT) was reduced (P < 0.05) in the SP50NC treatment after 24, 48, 72, and 96 h of storage, and TMOT did not differ (P > 0.05) in the SP10C, SP50C, SP10NC groups after the same storage periods. The % COMP-αt did not differ (P > 0.05) among treatments at any time period. Percent membrane intact sperm (SMI) was reduced in SP50NC, as compared to SP10C at 48, 72, and 96 h (P < 0.05). Daily centrifugation and resuspension of sperm exposed to 50% seminal plasma for the first 24 h (SP50C) yielded similar TMOT, PMOT, VCL, SMI, % COMP-αt (P > 0.05) to Groups SP10NC and SP10C after 96 h of storage. Daily centrifugation and resuspension of cool-stored equine semen in fresh extender may be a method to increase sperm longevity.  相似文献   

2.
Increasing seminal plasma concentrations in extended stallion semen were utilized to model decreasing sperm motility over time. Level of agreement was determined between flow cytometric measurement of sperm membrane integrity, using a combination of SYBR-14 and propidium iodide, and computer-assisted analysis of sperm motility. Values for total sperm motility (TMOT;%) and membrane integrity (SMI;%) were similar (∼80%) at Time 0 within all sperm treatments. However, TMOT was lower than SMI after 24 and 48 h of storage in treatments with >20% seminal plasma. At Time 0, agreement (bias and absolute difference) between TMOT and SMI was high (-0.7 and 5.6%, respectively), but decreased after 24 (10.8 and 15.1%, respectively) and 48 h (23.0 and 23.8%, respectively) of cooled storage as motility declined more rapidly than SMI. We concluded that TMOT and SMI measured separate aspects of sperm quality.  相似文献   

3.
The objectives were to determine the: 1) extent of epithelial and red blood cell contamination in epididymal cat sperm samples recovered by the cutting method; 2) efficacy of simple washing, single-layer centrifugation (SLC), and swim-up for selecting epididymal cat sperm; and 3) effects of freezing and thawing on cat sperm selected by various techniques. Ten unit samples were studied; each contained sperm from the cauda epididymides of four cats (total, ∼200 × 106 sperm) and was equally allocated into four treatments: 1) simple washing, 2) single-layer centrifugation through colloid prior to cryopreservation (SLC-PC), 3) single-layer centrifugation through colloid after cryopreservation (SLC-AC), and 4) swim-up. Centrifugation (300 × g for 20 min) was done for all methods. The SLC-PC had a better recovery rate than the SLC-AC and swim-up methods (mean ± SD of 16.4 ± 8.7, 10.7 ± 8.9, and 2.3 ± 1.7%, respectively; P < 0.05). The SLC-PC, SLC-AC and swim-up samples contained less red blood cell contamination than simple washed samples (0.02 ± 0.01, 0.02 ± 0.04, 0.03 ± 0.04, and 0.44 ± 0.22 × 106 cells/mL, respectively; P < 0.05). Although the proportion of sperm with head abnormalities did not differ among selection methods (P > 0.05), SLC-PC yielded the highest percentage of sperm with normal midpieces and tails (P < 0.05), due to the lowest proportion of coiled tails (P < 0.05). Furthermore, the SLC-PC was as effective as swim-up in removing sperm with proximal droplets, and selecting motile sperm, as well as those with intact membranes and DNA (P > 0.05). In conclusion, both SLC-PC and swim-up improved the quality of epididymal cat sperm, including better morphology, membrane and DNA integrity, and removal of cellular contamination. However, SLC had a better sperm recovery rate than swim-up.  相似文献   

4.
K.M. Morton  G. Evans 《Theriogenology》2010,74(2):311-1133
Two experiments were conducted to determine the effects of glycerol concentration and Equex STM® paste on the post-thaw motility and acrosome integrity of epididymal alpaca sperm. In Experiment 1, epididymal sperm were harvested from male alpacas, diluted, and cooled to 4 °C in a Lactose cooling extender, and pellet-frozen in a Lactose cryodiluent containing final glycerol concentrations of 2, 3, or 4%. In Experiment 2, epididymal sperm were diluted in Biladyl®, cooled to 4 °C, stored at that temperature for 18-24 h, and further diluted with Biladyl® without or with Equex STM® paste (final concentration 1% v:v) before pellet freezing. In Experiment 1, sperm motility was not affected by glycerol concentration immediately (2%: 16.1 ± 4.6%; 3%: 20.5 ± 5.9% and 4%: 18.5 ± 6.6%; P > 0.05) or 3h post thaw (< 5% for all groups; P > 0.05). Post-thaw acrosome integrity was similar for sperm frozen in 2% (83.6 ± 1.6%), 3% (81.3 ± 2.0%) and 4% glycerol (84.8 ± 2.0%; P > 0.05) but was higher 3h post-thaw for sperm frozen in 3% (75.7 ± 3.8%) and 4% (77.2 ± 4.1%) than 2% glycerol (66.9 ± 2.7%; P < 0.05). In Experiment 2, sperm motility was higher immediately after thawing for sperm frozen in the presence of Equex STM® (Equex®: 21.5 ± 3.5%; control: 14.4 ± 2.1%; P < 0.05) but was similar at 3h post-thaw (P > 0.05). Acrosome integrity was similar for sperm frozen with or without Equex STM® paste immediately (control: 89.6 ± 1.2%; Equex®: 91.1 ± 1.4%; P > 0.05) and 3 h post-thaw (control: 69.3 ± 3.7%; Equex®: 59.9 ± 5.8%; P > 0.05). Sperm cryopreserved in medium containing 3-4% glycerol and 1% Equex STM® retained the best motility and acrosome integrity, even after liquid storage for 18-24 h at 4 °C prior to cryopreservation.  相似文献   

5.
Experiments were conducted to determine the effect of hypothermic 24 h storage on striped bass sperm cell plasma membrane integrity, free intracellular Ca2+ ([Ca2+]i), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) formation (oxidation of hydroethidine to ethidium) as determined by flow cytometry; motion activation and ATP concentration as determined by Luciferin-Luciferase bioluminescence assay. Semen was stored for 1 or 24 h at 4 °C in an O2 atmosphere undiluted or diluted (one volume semen with 3 volumes diluent) with T350 (20 mM TRIS base-NaCl, 350 mOsm/mL, pH 8) or with seminal plasma in the presence of various treatments. Viability (% cells excluding propidium iodide) approached 100% after 1 h storage in undiluted or diluted semen. After 1 h of storage the [Ca2+]i marker, Fluo-3, was detected in only 3% of sperm cells in undiluted or diluted semen. In contrast to storage for 1 h, after 24 h the incidence Fluo-3 fluorescence intensity was increased (P < 0.05) in > 50% of the viable cells in undiluted and diluted semen along with increased cell death; the presence of 1 mM ethylene glycol tetraacetic acid (EGTA) blocked CaCl2-induced Fluo-3 fluorescence and cell death. Activation of sperm motility was 82% after 1 h in T350 and decreased (P < 0.05) to 30% after 24 h. However, motility activation failed in the presence of EGTA at 1 or 24 h. During storage ΔΨm was not affected by storage time or treatment. In contrast, sperm ATP was greater (P < 0.05) at 1 h than at 24 h and was greater in sperm stored in diluted than undiluted form. While ROS formation was induced by menadione treatment, there was no evidence of storage-induced ROS formation in the absence of menadione. The increased [Ca2+]i found after 24 h indicates a storage induced defect in the maintenance of cellular calcium homeostasis which may be detrimental to sperm activation.  相似文献   

6.
Conventional centrifugation protocols result in important sperm losses during removal of the supernatant. In this study, the effect of centrifugation force (400 or 900 × g), duration (5 or 10 min), and column height (20 or 40 mL; Experiment 1); sperm concentration (25, 50, and 100 × 106/mL; Experiment 2), and centrifugation medium (EZ-Mixin CST [Animal Reproduction Systems, Chino, CA, USA], INRA96 [IMV Technologies, Maple Grove, MN, USA], or VMDZ [Partnar Animal Health, Port Huron, MI, USA]; Experiment 3) on sperm recovery and survival after centrifugation and cooling and storage were evaluated. Overall, sperm survival was not affected by the combination of centrifugation protocol and cooling. Total sperm yield was highest after centrifugation for 10 min at 400 × g in 20-mL columns (95.6 ± 5%, mean ± SD) or 900 × g in 20-mL (99.2 ± 0.8%) or 40-mL (91.4 ± 4.5%) columns, and at 900 × g for 5 min in 20-mL columns (93.8 ± 8.9%; P < 0.0001). Total (TMY) and progressively motile sperm yield followed a similar pattern (P < 0.0001). Sperm yields were not significantly different among samples centrifuged at various sperm concentrations. However, centrifugation at 100 × 106/mL resulted in significantly lower total sperm yield (83.8 ± 10.7%) and TMY (81.7 ± 6.8%) compared with noncentrifuged semen. Centrifugation in VMDZ resulted in significantly lower TMY (69.3 ± 22.6%), progressively motile sperm yield (63.5 ± 18.2%), viable yield (60.9 ± 36.5%), and survival of progressively motile sperm after cooling (21 ± 10.8%) compared with noncentrifuged semen. In conclusion, centrifuging volumes of ≤ 20 mL minimized sperm losses with conventional protocols. With 40-mL columns, it may be recommended to increase the centrifugal force to 900 × g for 10 min and dilute the semen to a sperm concentration of 25 to 50 × 106/mL in a milk- or fractionated milk-based medium. The semen extender VMDZ did not seem well suited for centrifugation of equine semen.  相似文献   

7.
The objectives of this study were to determine the effects of centrifugation on equine sperm total and progressive motility, viability, and acrosomal integrity. We hypothesized that although high centrifugation forces would be detrimental to equine Equus caballus sperm, recovery rates would increase. Ejaculates from six stallions were collected, extended to a concentration of 25 × 106 cells/mL, and subjected for 10 min to (1) no centrifugation (NC) or (2) centrifugation at 400 × g, (3) 900 × g, or (4) 4500 × g. Before and after centrifugation (Day 0), and after 24 h of cooling (Day 1), sperm motility was assessed by computer-assisted semen analysis, and samples were stained with SYBR-14/propidium iodide (PI) for viability and with PI/fluorescein isothiocyanate (FITC)-Peanut aglutinin (PNA) (Arachis hypogaea) for acrosomal integrity. The effect of treatment and day on motility, viability, and acrosomal integrity was determined using a mixed linear model. Compared with the other treatments, centrifugation at 4500 × g reduced all end points measured (P < 0.05). Both 400 × g and 900 × g yielded lower recovery rates than that of 4500 × g (NC = 100.0 ± 0.0%; 400 × g = 54.4 ± 8.6%; 900 × g = 75.0 ± 7.1%; 4500 × g = 97.9 ± 2.8%; P < 0.05). Centrifugation at 400 × g or 900 × g did not damage equine sperm. Based on these findings, further studies of centrifugal forces between 900 × g and 4500 × g are warranted to determine the optimal force that maximizes recovery rate, minimizes sperm damage, and does not affect fertility.  相似文献   

8.
The main objective of this study was to investigate if centrifugation through PureSperm® density-gradient can improve the post-thaw semen quality of dog semen. Semen from 5 dogs was collected and cryopreserved following a standard protocol. After thawing, semen samples were selected by centrifugation on PureSperm®. Assessments of sperm motility (assessed by computerized-assisted semen analysis), morphology (Diff-Quick staining) and viability (triple fluorescent stain of Propidium iodine/isothiocyanate-labeled peanut (Arachis hypogaea) agglutinin/Rhodamine 123), were performed on aliquots of fresh semen, unselected samples and selected preparations. Cryopreservation had a significant (P < 0.001) effect on all studied semen parameters. PureSperm® centrifugation yielded sperm suspensions with improved motility and viability (P < 0.001). The washing step significantly reduced (P < 0.001) all of the kinematics parameters evaluated as well as reduced the proportion of viable spermatozoa with intact acrosomes (P < 0.05). We concluded that PureSperm® centrifugation is a successful method for improving the quality of frozen-thawed dog spermatozoa. However, washing after density-gradient centrifugation dramatically reduces the post-thaw semen quality, indicating that the inclusion of such a washing step is unnecessary.  相似文献   

9.
Three experiments were conducted to evaluate the impact of centrifugation on cooled and frozen preservation of equine semen. A standard centrifugation protocol (600 × g for 10 min = CP1) was compared to four protocols with increasing g-force and decreased time period (600 × g, 1200 × g, 1800 × g and 2400 × g for 5 min for CP2, 3, 4, and 5, respectively) and to an uncentrifuged negative control. In experiment 1, the influence of the different CPs on sperm loss was evaluated by calculating the total number of sperm cells in 90% of the supernatant. Moreover, the effect on semen quality following centrifugation was assessed by monitoring several sperm parameters (membrane integrity using SYBR14-PI, acrosomal status using PSA-FITC, percentage total motility (TM), percentage progressive motility (PM) and beat cross frequency (BCF) obtained with computer assisted sperm analysis (CASA)) immediately after centrifugation and daily during chilled storage for 3 d. The use of CP1 resulted in a sperm loss of 22%. Increasing the centrifugation force to 1800 × g and 2400 × g for 5 min led to significantly lower sperm losses (7.4% and 2.1%, respectively; P < 0.05). Compared to the uncentrifuged samples, centrifugation of semen resulted in a better sperm quality after chilled storage. There were minimal differences between the CPs although total motility was lower for CP2 than for the other treatments (P < 0.005). In experiment 2, the centrifuged samples were cryopreserved using a standard freezing protocol and analyzed immediately upon thawing. Samples centrifuged according to CP2 resulted in a higher BCF (P < 0.005), whereas CP3 and CP5 yielded a lower BCF (P < 0.05) when compared to CP1. There were no post thaw differences between CP1 and CP4. In experiment 3, DNA integrity of the different samples was analyzed using TUNEL. Although DNA integrity decreased over time, CP had no impact. In conclusion, the loss of sperm cells in the supernatant after centrifugation can be substantially reduced by increasing the g-force up to 1800 × g or 2400 × g for a shorter period of time (5 min) compared to the standard protocol without apparent changes in semen quality, resulting in a considerable increase in the number of insemination doses per ejaculate.  相似文献   

10.
Ping S  Wang F  Zhang Y  Wu C  Tang W  Luo Y  Yang S 《Theriogenology》2011,76(1):39-46
Cryopreservation of sperm from tree shrews, which are considered primitive primates, would enhance genetic management and breeding programs. Epididymal sperm were surgically harvested from male tree shrews, cryopreserved in two Tes-Tris-based cryodiluents, and used in four experiments. In Experiment 1, there were no significant differences in motility and acrosome integrity among five concentrations of egg yolk in TTE after cooling to 4 °C. However, sperm frozen in TTE containing 20% egg yolk at −172 °C/min had better (P < 0.05) post-thaw motility and acrosome integrity. In Experiment 2, sperm held for 10 min prior to storage in liquid nitrogen had greater motility than those held for 5 or 15 min (P < 0.05), but acrosome integrity was not different (P > 0.05) among treatments. In Experiment 3, sperm frozen in TTE diluent had higher (P < 0.05) motility and acrosome integrity than those in TEST diluent. In Experiment 4, there were no differences (P > 0.05) in the fertilization rate of oocytes and the proportion of tree shrews yielding fertilized oocytes, following AI with fresh versus frozen sperm. In conclusion, tree shrew epididymal sperm were successfully cryopreserved, as assessed by post-thaw motility, acrosome integrity, and fertilizing ability.  相似文献   

11.
Aboagla EM  Maeda T 《Theriogenology》2011,76(3):538-546
Arbutin (4-hydroxyphenyl-glucopyranoside) is a glycosylated hydroquinone present in high concentrations in the leaves of several plants capable of surviving prolonged, extreme dehydration. Two experiments were conducted to determine the effects of arbutin on cryopreservation of goat sperm. In Experiment 1, goat sperm were frozen in extenders with various ratios of Tris-citric acid-glucose (TCG) and arbutin; concentrations of the latter were 0.0 (only TCG), 0.1, 0.2, 0.3, and 0.4 M (only arbutin)]. All extenders had 20% (v/v) egg yolk (EY) and 4% (v/v) glycerol (osmolality = 370 mOsm, pH = 7.0). Sperm motility and acrosome integrity were assessed using CASA, and fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA), respectively. Percentages of motile and progressively motile sperm improved with the addition of arbutin; results were optimal (89.0 and 70.0%, respectively; P < 0.05), with 0.4 M arbutin. Furthermore, arbutin improved (P < 0.05) post-thaw recovery rates for both motility and progressive motility. After incubation for 3 h, motility of frozen-thawed washed sperm improved (70%, P < 0.05) with arbutin in the extender. The percentage of sperm with an intact acrosome peaked (77.2%, P < 0.05) with 0.4 M arbutin in the extender. In Experiment 2, the percentage of cells with merocyanine 540/Yo-Pro staining was higher in sperm treated with arbutin than with TCG (P < 0.05), with the best result (58.0%) with 0.4 M arbutin; therefore, arbutin increased membrane fluidity. In conclusion, substitution of a TCG-EY diluent composition with arbutin improved freezability of goat sperm (apparently due to increased membrane fluidity). Furthermore removal of arbutin by centrifugation after freezing and thawing increased sperm longevity.  相似文献   

12.
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used.  相似文献   

13.
The aim of this work was to study the effects of dilution and centrifugation (i.e., two methods of reducing the influence of the seminal plasma) on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey (Equus asinus) semen. Fifty ejaculates from nine Catalonian jackasses were collected. Gel-free semen was diluted 1:1, 1:5 or 1:10 with Kenney extender. Another sample of semen was diluted 1:5, centrifuged, and then resuspended with Kenney extender until a final dilution of 25 × 106 sperm/ml was achieved (C). After 24 h, 48 h or 72 h of refrigerated storage at 5 °C, aliquots of these semen samples were incubated at 37 °C for 5 min. The percentage of viable sperm was determined by staining with eosin-nigrosin. The motility characteristics of the spermatozoa were examined using the CASA system (Microptic, Barcelona, Spain). At 24 h, more surviving spermatozoa were seen in the more diluted and in the centrifuged semen samples (1:1 48.71%; 1:5 56.58%, 1:10 62.65%; C 72.40%). These differences were maintained at 48 h (1:1 34.31%, 1:5 40.56%, 1:10 48.52%, C 66.30%). After 72 h, only the C samples showed a survival rate of above 25%. The four known donkey motile sperm subpopulations were maintained by refrigeration. However, the percentage of motile sperms in each subpopulation changed with dilution. Only the centrifuged samples, and only at 24 h, showed exactly the same motile sperm subpopulation proportions as recorded for fresh sperm. However, the 1:10 dilutions at 24 and 48 h, and the centrifuged semen at 48 h, showed few variations compared to fresh sperm. These results show that the elimination of seminal plasma increases the survival of spermatozoa and the maintenance of motility patterns.The initial sperm concentration had a significant (P < 0.05) influence on centrifugation efficacy, but did not influence the number of spermatozoa damaged by centrifugation. In contrast, the percentage of live spermatozoa in the fresh semen significantly influenced the number of spermatozoa damaged by centrifugation, but not centrifugation efficacy.  相似文献   

14.
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing–thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P < 0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (< 0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen–thawed spermatozoa. Centrifugation decreased motility and PMI of frozen–thawed spermatozoa (P < 0.05). Centrifugation decreased basal ROS of all spermatozoa (< 0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (< 0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.  相似文献   

15.
In Vimba vimba, GSI, sperm volume, and spermatozoa concentration range from 3.4-7.4 %, 0.1-1.1 ml, and 13.3-34.8 × 109 spz ml−1, respectively. Gonad mass (r = 0.90) and sperm volume (r = 0.35) significantly correlated with weight of males. Significant correlation was also found between gonad mass and length of males (r = 0.85). Sperm motility (r = 0.99) and velocity (r = 098) significantly decreased after activation in Tris-HCl 20 mM, pH 8.5. Osmolality of the seminal plasma was 273.2 mOsmol kg−1. Sperm motility and velocity were significantly affected by the osmolality of the activation medium (P < 0.01). Hyper-osmolality compared to seminal plasma osmolality totally suppressed the sperm activation. At 15 s post-activation, the sperm motility significantly decreased at 240 mOsmol kg−1 in KCl or NaCl media. The highest sperm motility and velocity (at 60 s post-activation) were observed at 200 mOsmol kg−1 in NaCl, KCl, or sucrose media. In all treatments, the tip of the flagellum of spermatozoa became curled into a loop shape after activation of sperm in distilled water containing 20 mM Tris-HCl, pH 8.5 that shortened the flagellum.  相似文献   

16.
Love CC 《Theriogenology》2011,76(3):547-557
Sperm quality has an important role in determining fertility. Although there have been numerous studies to document the relationship between sperm quality and fertility, the methods of determining this association and conclusions vary. In the present study, computer-assisted sperm analysis (CASA) was used for evaluation of sperm motility, and differential interference contrast (DIC) microscopy was used for evaluating sperm morphologic features of breeding stallions. Fertility was measured using three endpoints: seasonal pregnancy rate (PR), percent pregnant/cycle (PC), and percent pregnant/first cycle (FCP). Increased total sperm motility (P = 0.08) and progressive path velocity (P = 0.06) tended to be associated with higher PR, whereas percent coiled tails (P = 0.02) was associated with a lower PR. Sperm motility variables associated with an increase in PC and FCP included total, progressive, and rapid sperm motility, and increased path and progressive velocity. Percent pregnant/first cycle was the only fertility measure able to discriminate among high, average, and low fertility groups, based on total and progressive sperm motility. Percent normal sperm was the only morphology variable associated with an increased PC and FCP, whereas increased levels of most sperm morphologic abnormalities (including abnormal and detached heads, proximal and distal droplets, general midpiece abnormality, and coiled tails) were associated with a decline in PC and FCP. Sperm quality variables most highly correlated with fertility included percent total sperm motility (PR, r = 0.37, P < 0.05; PC, r = 0.59, P < 0.05; and FCP, r = 0.64, P < 0.05), and percent morphologically normal sperm (PC, r = 0.42, P < 0.05; and FCP, r = 0.39, P < 0.05).  相似文献   

17.
Standard semen parameters are limited in their capacity to distinguish subfertile boars and to assess storage influences on liquid preserved boar semen. The evaluation of sperm chromatin structural integrity could have potential as a diagnostic tool in AI practice. This study assessed whether the determination of sperm DNA integrity adds a useful diagnostic tool for selection of boar ejaculates in routine AI procedure and assessment of storage effects in diluted semen. Special emphasis was laid on the standard spermatological characterization of semen samples in parallel with the determination of the DNA fragmentation index (DFI) through the sperm chromatin structure assay (SCSA). Six hundred ninety two (692) ejaculates from 79 Piétrain boars in an AI center were analyzed for motility, morphology and DFI over a period of 24 weeks. 95.5% of the semen samples had a DFI < 5% with low distribution of variation for DFI due to boar and ejaculate (< 5%). 61.3% of ejaculates with DFI > 5% showed values below thresholds for sperm motility or morphology. Based on field data from 13,239 inseminations, fertility of boars with temporarily elevated DFI was not impaired (P > 0.05). 24 randomly selected diluted semen samples did not show a significant increase of DFI during 168 h storage (P > 0.05). In a further experiment, 42 diluted semen samples from 14 normospermic boars were assessed for motility, membrane integrity (PI, FITC-PNA) and SCSA parameters. Three single ejaculates showed an increase of DFI at 120 and 168 h storage time. This was accompanied by a pronounced loss of both motility and membrane integrity. In conclusion, the evaluation of sperm chromatin structural integrity by the SCSA has only limited value for identifying sperm deficiencies in normospermic fresh or stored boar semen. Temporarily elevated DFIs seem not to be indicative of subfertility in normospermic boars.  相似文献   

18.
This study examined the effects of bovine oviductal fluid (bOF) obtained during the follicular or luteal phase of the estrous cycle on ram sperm kinematics, capacitation status and plasma membrane (PM) integrity at various time points during the 24-h incubation period. Fresh ram spermatozoa were selected using the swim-up technique and then incubated separately with either follicular phase (FbOF) or luteal phase (LbOF) bovine oviductal fluid added to Fert-TALP medium (positive control - POSControl) or in Fert-TALP medium without capacitating agents (negative control - NEGControl) at 38 °C under 5% CO2. Incubation with FbOF or LbOF for 2 h and 4 h promoted an increase (P < 0.05) in most of the sperm motility parameters as compared with the NEGControl group, and bOF-induced changes in sperm kinematics were similar (P > 0.05) to those seen in the POSControl group. After 6 h of incubation, the stimulatory effect of FbOF or LbOF on ram sperm kinematics was no longer observed (P > 0.05). Sperm PM integrity was not affected (P > 0.05) by incubation in bOF-supplemented media or in absence of capacitating factors (NEGControl). Although neither FbOF nor LbOF had any effect on sperm capacitation rates, the proportion of acrosome-reacted spermatozoa was greater (P < 0.05) for bOF-containing media compared with the NEGControl group during the long incubation periods (18 h and 24 h). In conclusion, bOF from either follicular or luteal phase of the estrous cycle enhances ram sperm motility for up to 4 h and the rate of acrosome reaction after long (18–24 h) incubation periods without affecting sperm viability.  相似文献   

19.
Sperm become most sensitive to cold shock when cooled from 37 °C to 5 °C at rates that are too fast or too slow; cold shock increases the susceptibility to oxidative damage owing to its influence on reactive oxygen species (ROS) production, which are significant stress factors generated during cooling and low temperature storage. In addition, ROS may be a main cause of decreased motility and fertility upon warming. They have been shown to change cellular function through the disruption of the sperm plasma membrane and through damage to proteins and DNA. The objective of this study was to determine which cryopreservation rates result in the lowest degree of oxidative damage and greatest sperm quality. In the rhesus model, it has not been determined whether suprazero cooling or subzero freezing rates causes a significant amount of ROS damage to sperm. Semen samples were collected from male rhesus macaques, washed, and resuspended in TEST-yolk cryopreservation buffer to 100 × 106 sperm/mL. Sperm were frozen in 0.5-mL straws at four different combinations of suprazero and subzero rates. Three different suprazero rates were used between 22 °C and 0 °C: 0.5 °C/min (slow), 45 °C/min (medium), and 93 °C/min (fast). These suprazero rates were used in combination with two different subzero rates for temperatures 0 °C to −110 °C: 42 °C/min (medium) and 87 °C/min (fast). The different freezing groups were as follows: slow-med (SM), slow-fast (SF), med-med (MM), and fast-fast (FF). Flow cytometry was used to detect lipid peroxidation (LPO), a result of ROS generation. Motility was evaluated using a computer assisted sperm motion analyzer. The MM and FF treated sperm had less viable (P < 0.0001) and motile sperm (P < 0.001) than the SM, SF, or fresh sperm. Sperm exposed to MM and FF treatments demonstrated significantly higher oxidative damage than SM, SF, or fresh sperm (P < 0.05). The SM- and SF-treated sperm showed decreased motility, membrane integrity, and LPO compared with fresh semen (P < 0.001). Slow cooling from room temperature promotes higher membrane integrity and motility post thaw, compared with medium or fast cooling rates. Cells exposed to similar cooling rates with differing freezing rates were not different in motility and membrane integrity, whereas comparison of cells exposed to differing cooling rates with similar freezing rates indicated significant differences in motility, membrane integrity, and LPO. These data suggest that sperm quality seems to be more sensitive to the cooling, rather than freezing rate and highlight the role of the suprazero cooling rate in post thaw sperm quality.  相似文献   

20.
Since antioxidants can overcome the negative effects of reactive oxygen species (ROS) during sperm cryopreservation, post-thaw sperm quality in flat-headed cats (Prionailurus planiceps), an endangered species, might benefit from the addition of antioxidants to semen extender. The objectives of this study were to: 1) investigate semen traits; and 2) evaluate effects of the vitamin E analogue Trolox (vitamin E) and glutathione peroxidase (GPx) on the quality of frozen sperm from captive flat-headed cats in Thailand. Eight ejaculates were collected by electroejaculation from four flat-headed cats. Each semen sample was divided into three aliquots and re-suspended in a semen extender as follows: 1) without antioxidant supplementation (control); 2) supplemented with 5 mM vitamin E; or 3) supplemented with 10 U/mL GPx. All samples were cryopreserved and thawed. Subjective sperm motility, progressive motility, and the integrity of the sperm membrane, acrosome and DNA were evaluated at semen collection, after 1 h cold storage, and at 0 and 6 h after thawing. Mitochondrial membrane potential, early apoptotic cells, and embryo development by heterologous in vitro fertilization were evaluated after thawing. Captive flat-headed cats were affected by teratozoospermia. After 1 h cold storage, sperm membrane integrity in samples supplemented with GPx was higher than the control group (54.5 ± 13.7 vs 51.3 ± 13.9; P < 0.05; mean ± SD). Sperm frozen in extender with GPx had higher motility at 6 h and greater mitochondrial membrane potential at 0 and 6 h post-thaw incubation than the other groups (P < 0.05). In conclusion, GPx improved the quality of frozen-thawed sperm in flat-headed cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号