首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
《Theriogenology》2013,79(9):1969-1976
The luteotrophic effect of bromocriptine in heifers was studied to determine if the reported posttreatment increase in progesterone (P4) just before or at the beginning of luteolysis was attributable to loss of a luteolytic effect of prolactin (PRL) or to the stimulation of LH, a known luteotropin. Four treatment groups (n = 7) were used: control (Ct), bromocriptine (Bc; 16 mg/heifer), acyline (Ac; 3 μg/kg), and bromocriptine and acyline combined (BcAc). Bromocriptine (inhibitor of PRL) and acyline (antagonist of GnRH and therefore blocker of LH) were given at Hour 0 on Day 16 postovulation, and blood samples were taken hourly at Hours 0 to 8. Concentration of P4 was greater (P < 0.05) in the Bc group than in the Ct group at each of Hours 1 to 8. Concentration of LH increased (P < 0.05) between Hours 0 to 2 in the Bc group but not in the other three groups. The peak of the first posttreatment LH pulse occurred earlier in the Bc group than in the Ct group. Average concentration of PRL was lower (P < 0.05) and number of PRL pulses was less (P < 0.05) in the Bc group than in the Ct group. Acyline inhibited LH in the Ac and BcAc groups as indicated by a decrease (P < 0.05) in concentration between Hours 0 and 2 and a decrease (P < 0.001) in number of pulses/heifer during the 8 h. A decrease in PRL but not an increase in P4 and LH occurred in the BcAc group. Results supported the hypothesis that the P4 increase associated with PRL suppression by bromocriptine treatment is attributable to an increase in LH.  相似文献   

2.
The effects of sequential induction of PGFM pulses by estradiol-17β (E2) on prominence of PGFM pulses and progesterone (P4) concentration were studied in heifers. Three treatments of vehicle (n = 12) or E2 (n = 12) at doses of 0.05 or 0.1 mg were given at 12-h intervals beginning on Day 15 postovulation. Blood samples were collected every 12 h from Days 13-24 and hourly for 12 h after the first and third treatments. On Day 15, all heifers were in preluteolysis and on Day 16 were in preluteolysis in the vehicle-treated heifers (n = 11) and either preluteolysis (n = 4) or luteolysis (n = 8) in the E2-treated heifers. Peak concentration of induced PGFM pulses during preluteolysis on Day 15 was greater (P < 0.04) than for pulses during preluteolysis on Day 16. The interval from ovulation to the beginning of luteolysis was shorter (P < 0.04) in the E2-treated heifers than in the vehicle-treated heifers. An E2-induced PGFM pulse was less prominent (P < 0.008) in heifers in temporal association with a transient resurgence in P4 than in heifers with a progressive P4 decrease. The hypothesis that repeated E2 exposure stimulates increasing prominence of PGFM pulses was not supported. Instead, repeated exposure reduced the prominence of PGFM pulses, in contrast to the stimulation from the first E2 treatment. Reduced prominence of a PGF pulse during luteolysis can lead to a transient resurgence in P4 concentration.  相似文献   

3.
The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.  相似文献   

4.
The requirement for pulsatile LH and the LH surge for the acquisition of oocyte fertilizing potential and embryo developmental competency was examined in Zebu heifers. Follicular growth was superstimulated using the GnRH agonist-LH protocol in which pulsatile LH and the preovulatory LH surge are blocked. In experiment 1, heifers were assigned on Day 7 of the estrous cycle to receive: group 1A (n = 5), 1.5 mg norgestomet (NOR) implant; group 1B (n = 5), GnRH agonist implant. Follicular growth was superstimulated with 2x daily injections of FSH from Day 10 (a.m.) to Day 13 (p.m.), with PGF2alpha injection on Day 12 (a.m.). Heifers were ovariectomized on Day 15 (a.m.) and oocytes were placed immediately into fertilization, without 24 h maturation. Respective cleavage and blastocyst development rates were: group 1A, 0/64 oocytes (0%) and 0/64 (0%); group 1B, 34/70 oocytes (48.6%) and 2/70 (2.9%). In experiment 2, heifers were assigned on Day 7 of the estrous cycle to receive: group 2A (n = 10), 1.5 mg NOR implant; group 2B (n = 10), GnRH agonist implant; group 2C (n = 10), GnRH agonist implant. Follicular growth was superstimulated as in experiment 1 above. Heifers in groups 2A and 2B received an injection of 25 mg LH on Day 14 (p.m.) and all heifers were ovariectomized on Day 15 (a.m.); oocytes were placed immediately into fertilization without 24 h maturation. Cleavage rates were similar for heifers in group 2A (84/175 oocytes, 48.0%), group 2B (61/112 oocytes, 54.5%) and group 2C (69/163, 42.3%). Blastocyst development rates were similar for heifers in group 2A (22/175 oocytes, 12.6%) and group 2B (25/112 oocytes, 22.3%) and lower (P < 0.05) for heifers in group 2C (9/163 oocytes, 5.5%). Oocytes obtained from heifers treated with GnRH agonist, without injection of exogenous LH, underwent cleavage indicating that neither pulsatile LH nor the preovulatory LH surge are obligatory for nuclear maturation in cattle oocytes. Exposure to a surge-like increase in plasma LH increased embryo developmental competency indicating that the preovulatory LH surge promotes cytoplasmic maturation. The findings have important implications for controlling the in vivo maturation of oocytes before in vitro procedures including nuclear transfer.  相似文献   

5.
Diurnal variation in progesterone and LH during the luteal phase and the temporal relationships between oscillations of the two hormones were studied in 10 heifers by collection of blood samples at 0100, 0700, 1300, and 1900 h each day, beginning on Day 1 (Day 0 = ovulation). Concentration of LH on Days 5-9, but not on Days 10-14, was lower (P < 0.05) at 0700 h (0.25 ± 0.02 ng/mL) than at each of the other three hours (combined, 0.32 ± 0.02 ng/mL). An oscillation was defined as an uninterrupted increase and decrease in concentrations. The number of LH oscillations/heifer with the peak at 1900 h (6.1 ± 0.7) throughout the luteal phase was greater (P < 0.01) than for each of the other hours (combined, 4.0 ± 0.2). Diurnal variation in progesterone was not detected. Only statistically defined LH oscillations were used to determine the temporal association between the peak of an LH oscillation and various components of a progesterone oscillation. On Days 5-14, the frequency of the peak of an LH oscillation occurring at the same hour as the peak of a progesterone oscillation (26/48, 54%) was greater (P < 0.0001) than at the progesterone nadir (3/48, 6%). The frequency of the LH peak occurring during increasing (11/34, 32%) and decreasing (8/25, 32%) progesterone concentrations was intermediate (P < 0.05). Results indicated the following: 1) diurnal variation occurred in LH as determined by concentration and by the hour of the peak of an oscillation; and 2) LH oscillations were temporally and positively related to progesterone oscillations.  相似文献   

6.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

7.
Silva ME  Colazo MG  Ratto MH 《Theriogenology》2012,77(9):1802-1810
Gonadotrophin releasing hormone (GnRH) is commonly used in llamas to induce ovulation; however, the consequence of reduced doses of GnRH on luteinizing hormone (LH) release, ovulatory response, and subsequent corpus luteum (CL) development and function have apparently not been investigated. Hence, we examined the effect of gradual reduction of gonadorelin acetate (GnRH) dosage on pituitary LH release, ovulatory response, CL development, and plasma progesterone concentrations in llamas. Non-pregnant, non-lactating adult llamas were examined once daily by transrectal ultrasonography, and those with a follicle ≥8 mm in diameter that had grown for three consecutive days were randomly assigned to receive 50 (GnRH50, n = 23), 25 (GnRH25, n = 29), 12.5 (GnRH12.5, n = 29), or 6.25 μg (GnRH6.25, n = 29) of GnRH, or 0.5 mL of PBS (Control group, n = 16) im. In a subset (7 or 8 animals/group), intense blood sampling was done to measure LH concentrations. All females were examined by ultrasonography every 12 h from treatment (Day 0) to Day 2 to determinate ovulation, and thereafter on alternate days until Day 16 to evaluate CL development (9-13 animals/group). Also, blood samples for progesterone determination were taken (9 or 10 animals/group) on alternate days from Days 0-16. Ovulatory response (%) was highest (P < 0.05) in the GnRH50 (82.6), intermediate in the GnRH25 (72.3) and GnRH12.5 (75.9) groups, and lowest in the GnRH6.25 group (48.3). No ovulations were detected in the Control group. Mean peak LH concentrations (ng/mL) were highest (P < 0.05) for GnRH50 (6.2), intermediate for GnRH25 (4.4) and GnRH12.5 (2.9), and lowest for GnRH6.25 (2.2) groups. In addition, based on regression analysis, llamas with an LH peak <4 ng/mL were less likely to ovulate. Llamas given 50 μg of GnRH released more (P < 0.05) pituitary LH and had an LH surge of longer duration than those given 25, 12.5, or 6.25 μg. However, in those that ovulated, neither GnRH treatment nor treatment by time interaction affected (P > 0.05) CL diameter or plasma progesterone concentrations. In summary, reducing the dose of GnRH gradually decreased the magnitude of the preovulatory LH surge and ovulatory response; however, subsequent CL development and plasma progesterone concentrations were not affected.  相似文献   

8.
A single physiologic dose (5.0 μg) of GnRH was given to 9 heifers each day (Hour 0) beginning on Day 15 postovulation until regression of the corpus luteum. Blood samples were taken each day for Hours -3, -2, -1, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.50, 1.75, 2, 3, 4, and 5. Based on daily progesterone concentrations, data were grouped into phases of before (n=4), during (n=8), and after (n=7) luteolysis. The number of LH pulses with a peak at pretreatment Hours -2 or -1 (0.35 ± 0.12 pulses/sampling session) was less (P<0.0001) than for a pulse peak at posttreatment Hours 1 or 2 (1.0 ± 0.0 pulses/session). The characteristics and effects of LH pulses on progesterone and estradiol were similar between natural (pretreatment) and primarily induced (posttreatment) LH pulses. The same dose of GnRH stimulated an LH pulse with greater (P<0.05) amplitude after luteolysis than during luteolysis. Concentrations of PRL and number and prominence of PRL pulses decreased (P<0.05) between Hours 0 and 2 within each of the phases of before, during, and after luteolysis. The hypothesis that a physiologic dose of GnRH increases the concentration of PRL was not supported; instead, GnRH reduced the concentration of PRL. Results supported the hypotheses that an appropriate dose of GnRH stimulates an LH pulse during luteolysis that is similar to a natural pulse in characteristics and in the effects on progesterone and estradiol.  相似文献   

9.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

10.
A new protocol for superovulating cattle which allows for control of the timing of ovulation after superstimulation with FSH was developed. The preovulatory LH surge was blocked with the GnRH agonist deslorelin, and ovulation was induced by injection of LH. In Experiment 1, heifers (3-yr-old) were assigned to a control group (Group 1A, n = 4) or a group with deslorelin implants (Group 1B, n = 5). On Day -7, heifers in Group 1A received a progestagen CIDR-B((R))device, while heifers in Group 1B received a CIDR-B((R))device + deslorelin implants. Both groups were superstimulated with twice daily injections of FSH (Folltropin((R))-V): Day 0, 40 mg (80 mg total dose on Day 0); Day 1, 30 mg; Day 2, 20 mg; Day 3, 10 mg. On Day 2, heifers were given PGF (a.m.) and CIDR-B((R)) devices were removed (p.m.). Three heifers in Group 1A had a LH surge and ovulated, whereas neither of these events occurred in Group 1B (with deslorelin implants) heifers. In Experiment 2, heifers (3-yr-old) were assigned to 1 of 4 equal groups (n = 6). On Day -7, heifers in Group 2A received a norgestomet implant, while heifers in Groups 2B, 2C and 2D received norgestomet + deslorelin implants. Heifers were superstimulated with FSH starting on Day 0 as in Experiment 1. On Day 2, heifers were given PGF (a.m.) and norgestomet implants were removed (p.m.). Heifers in Groups 2B to 2D were given 25 mg LH (Lutropin((R))): Group 2B, Day 4 (a.m.); Group 2C, Day 4 (p.m.); Group 2D, Day 5 (a.m.). Heifers in Group 2A were inseminated at estrus and 12 and 24 h later, while heifers in Groups 2B to 2D were inseminated at the time of respective LH injection and 12 and 24 h later. Injection of LH induced ovulation in heifers in Groups 2B to 2D. Heifers in Group 2C had similar total ova and embryos (15.2 +/- 1.4) as heifers in Group 2A (11.0 +/- 2.8) but greater (P < 0.05) numbers than heifers in Group 2B (7.0 +/- 2.3) and Group 2D (6.3 +/- 2.0). The number of transferable embryos was similar for heifers in Group 2A (5.8 +/- 1.8) and Group 2C (7.3 +/- 2.1) but lower (P < 0.05) for heifers in Group 2B (1.2 +/- 0.8) and Group 2D (1.3 +/- 1.0). The new GnRH agonist-LH protocol does not require observation of estrus, and induces ovulation in superstimulated heifers that would not have an endogenous LH surge.  相似文献   

11.
A bolus treatment (e.g., 25 mg) of prostaglandin F(2alpha) (PGF) in the study of luteolysis in cattle results in dubious interpretations. Therefore, in experiment 1 of the present study, a 13,14-dihydro-15-keto-PGF (PGFM) pulse was simulated by incremental intrauterine (IU) infusion of PGF for 2.7 h on Day 14 postovulation. Concentrations of PGFM during the first hour of infusion and at the maximum were not different between simulated (n = 7) and spontaneous (n = 7) pulses. In experiment 2, four groups (n = 6 per group) were treated at Minute 0 (beginning of infusion) as follows: saline (infused IU), PGF (infused IU), acyline/saline, and acyline/PGF. Two hours before Minute 0, each heifer was given flunixin meglumine to inhibit endogenous PGF secretion, and heifers in the acyline/saline and acyline/PGF groups were given acyline to inhibit luteinizing hormone (LH). Plasma progesterone concentrations were similar among groups during Minutes 0 to 60, with no indication of an initial transient progesterone increase in the two PGF groups. Progesterone began to decrease in the PGF groups at Minute 60 and to rebound at Minute 135 after the PGFM peak at Minute 120. The rebound was complete in association with an increase in LH in the PGF group, but it was not complete when LH was inhibited in the acyline/PGF group. Luteal blood flow increased during PGF infusion in the two PGF groups and remained elevated for approximately 2 h after the PGFM peak in the PGF group but not in the acyline/PGF group. Novel findings were that an initial transient increase in progesterone did not occur with the simulated PGFM pulse and that LH stimulated a progesterone rebound and maintained the elevated luteal blood flow after the PGFM peak.  相似文献   

12.
Progestagens are widely used to synchronise oestrous in sheep but the effects on follicular dynamics are not clear. We tested the hypothesis that when luteolysis occurs early during progestagen synchronisation prolonged growth of the ovulatory follicle will occur. Cyclic ewe lambs (40.0+/-0.3 kg) were divided into three groups: eight ewes (Long group) received a progestagen sponge (60 mg medroxyprogesterone acetate) from Days 5 to 19 after oestrous and eight ewes (Short group) received a progestagen sponge on Day 5 which was replaced on Day 10 and again on Day 15, and removed on Day 19 after oestrous. On Days 6 and 7, ewes in both groups received prostaglandin. A third group (n=5, Control) did not receive any treatment. The growth and development of follicles > or =2 mm in diameter were characterised using daily transrectal ultrasonography. On Day 18, blood samples were collected every 12 min for 8 h from five ewes in the Long and Short groups. Data were analysed by ANOVA. The maximum diameter and age (emergence to ovulation) of the ovulatory follicle was greater (P<0.01) in ewes in the Long group (7. 4+/-0.2 mm and 12.1+/-0.6 days) than in ewes in the Short group (6. 3+/-0.2 mm and 5.1+/-0.5 days) and Control group (6.3+/-0.4 mm and 6. 8+/-0.6 days). On Day 18 of the cycle, LH pulse frequency and oestradiol concentrations were greater (P<0.05) in ewes in the Long group (3.2+/-1.1 pulse per 8 h and 1.15+/-0.09 pg ml(-1)) than the Short group (0.8+/-0.4 pulses per 8 h and 0.54+/-0.08 pg ml(-1)).We suggest that the negative feedback efficacy of a long-term progestagen sponge decreased with time and led to an increase in LH pulse frequency and prolonged growth of the ovulatory follicle. We conclude that, in the absence of luteal progesterone, synchronisation with a single progestagen sponge for 14 days resulted in higher LH pulse frequency and ovulation of a persistent follicle with a larger maximum diameter, compared with controls.  相似文献   

13.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

15.
The roles of the pulsatile release of LH in the functional development and maintenance of the corpus luteum (CL) during the estrus cycle in the goat were examined using a potent GnRH antagonist. In Experiment 1, to assess the inhibitory effects of the GnRH antagonist on the release of LH during the estrus cycle, 9 goats were divided into 3 groups. Goats in Group I received only saline on Days 0 (day of ovulation), 5, 10 and 15. Goats in Group II received the GnRH antagonist (50 microg/kg, s.c.) on the days mentioned for Group I to inhibit endogenous LH during the periods of luteal development and maintenance. Goats in Group III received saline on Days 0 and 5 and then the GnRH antagonist on Days 10 and 15 to inhibit LH during the period of luteal maintenance. Serial blood sampling took place on Days 1, 3, 5, 8, 13 and 18 to characterize the LH pulses. The LH pulses were observed throughout the estrus cycle in Group I but were completely abolished in Group II. In Group III, the pulsatile release of LH was observed from Day 1 to 8, but the LH pulses were completely abolished on Days 13 and 18. In Experiment 2, 16 goats were divided into the same 3 groups as in Experiment 1 to examine the effects of the GnRH antagonist on the luteal function. The concentration of progesterone in the plasma in Group I increased after ovulation, reached a maximum level around Day 12, and subsequently returned to the basal level on Day 17. The concentrations of progesterone in Group II rose after ovulation, but reached a plateau around Day 6 and maintained the level up to Day 9, then rapidly decreased from Day 9 to 10 to the basal level. The concentrations of progesterone in Group II were lower on Days 7 to 15 than those in Group I (P<0.01). The concentrations of progesterone in Group III increased after ovulation, reached a maximum level around Day 8, then dropped from Day 10 to 13 to the basal level. The concentrations of progesterone in Group III on Days 11 to 15 were lower than those in Group I (P<0.05 on Day 11, P<0.01 on Days 12 to 15). These results demonstrate that endogenous LH is essential for normal development and maintenance of the CL function during the estrus cycle in the goat. Further, this study suggests that while the functional maintenance of the caprine CL depends entirely on LH support, such functional dependence during early CL development is only partial.  相似文献   

16.
Concentrations of circulating hormones after Day 14 (Day 0 = ovulation) were determined daily in 87 interovulatory intervals (IOIs) in heifers. The IOIs were grouped into four permutations according to an ipsilateral (Ipsi) or contralateral (Contra) relationship between the CL and the preovulatory follicle and two (2W) or three (3W) follicular waves per IOI. The number of IOIs per group differed (P < 0.005) from equality among the Ipsi-2W (n = 27), Contra-2W (n = 31), Ipsi-3W (n = 9), and Contra-3W (n = 20) groups. A continuous decrease in progesterone (luteolysis) began later (P < 0.05) in the Contra-3W group (Day 18.0 ± 0.4) than in each of the Ipsi-2W (15.4 ± 0.2), Contra-2W (15.6 ± 0.2), and Ipsi-3W (16.2 ± 0.5) groups. Concentrations of LH and estradiol began to increase near the beginning of luteolysis in each group. A minor FSH surge that did not stimulate a major follicular wave developed in about 50% of the IOIs in each group, except that none were detected in the Ipsi-3W group. The minor FSH surge reached a peak about 4 days before ovulation and several days after wave 3 had emerged. The hypothesis that luteolysis begins earliest in two-wave IOIs, intermediate in three-wave IOIs with an ipsilateral CL/follicle relationship, and latest in three-wave IOIs with a contralateral relationship was supported. The hypothesis that a minor FSH surge occurs most frequently in association with three follicular waves was not supported.  相似文献   

17.
This study evaluated the effect of removing the GnRH injection on Day 0 or the progesterone (P4) device from a GnRH, PGF2α, GnRH (GPG) + P4 program on follicular dynamics and synchronization of ovulation in dairy heifers. Friesian and Friesian × Jersey heifers, in autumn 2009 (n = 35) and spring 2010 (n = 38), were randomly allocated to one of three estrus synchronization programs. The first group (GPG + P4) received 100 μg GnRH on Day 0, a P4-releasing intravaginal device from Days 0 to 7, 500 μg PGF2α on Day 7, and 100 μg GnRH on Day 9, followed by fixed-time artificial insemination 16 to 20 hours later. The program for group 2 (GPG) was the same as group 1 with the exclusion of the P4 device. Group 3 (P + G + P4) was treated the same as group 1, except for the absence of the GnRH treatment on Day 0. Ultrasonography was performed on Days 0, 1, 2, 3, and 7 and then at 12 hourly intervals on Days 9 to 11. Dominant follicle size was affected by both treatment and day, and there was also a significant interaction (P < 0.02) between treatment and day. Mean dominant follicle size was larger in the heifers treated with P + G + P4 on Days 1 to 3 than those treated with GPG + P4 (P < 0.02) and, on Day 2, than those treated with GPG (P = 0.005). However, on Day 7, mean dominant follicle size was larger in heifers treated with GPG than heifers treated with P + G + P4 (P = 0.03). The emergence of a new follicular wave was later in heifers treated with P + G + P4 than heifers, which received a GnRH injection on Day 0 (4.3 ± 0.7 days, compared with combined GPG + P4 and GPG 3.0 ± 0.3 days; P = 0.03). The proportion of heifers that ovulated within the first 48 hours after the Day 9 injection of GnRH was not affected by treatment (GPG, 81%; GPG + P4, 84%; and P + G + P4, 100% [including early ovulation]; P = 0.11). The timing of the ovulation was not different between treatments (P = 0.97).  相似文献   

18.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

19.
The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.  相似文献   

20.
Gonadotrophin-releasing hormone (GnRH) antagonists may have a future role in the control of canine reproductive function. In this study, the effects of a single dose of the potent GnRH antagonist, acyline, on serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) were evaluated in male dogs. Blood samples were drawn before (Day −1) and after (30, 60, and 90 min, 3, 6, 9, 12, and 24 h, and 3, 6, 9, 14, 22, and 29 d) treatment with acyline (330 μg/kg, sc); serum concentrations of FSH, LH, and T varied throughout the study period (P < 0.01, <0.05, and <0.01, respectively). Gonadotrophins decreased below pretreatment concentrations 60 min after injection, whereas T took 90 min to decrease below baseline (P > 0.05). Follicle-stimulating hormone, LH and T decreased until Day 9, when they reached their nadir at 2.0 ±1.1 ng/mL (P < 0.01), 1.2 ± 0.2 ng/mL (P > 0.05), and 0.5 ± 0.2 ng/mL (P < 0.05), respectively. Both gonadotrophins and T began increasing on Day 14 after treatment, although FSH and T serum concentrations still remained below baseline on that day (P > 0.05). Follicle-stimulating hormone and T rebounded above baseline on Day 29, whereas LH reached concentrations were similar to baseline at this time (P > 0.05). No local or systemic side effects were detected in any dog following acyline treatment. In conclusion, a single acyline treatment safely and reversibly decreased serum gonadotrophin and T concentrations in dogs for 9 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号