首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).  相似文献   

2.
Blood samples were collected and follicle diameters were determined daily beginning on Day 12 (Day 0 = ovulation) in 35 interovulatory intervals (IOIs) in heifers. A minor follicular wave with maximal diameter (6.0 ± 0.3 mm) on Day −4 was detected in six of seven IOIs that were scanned for follicles 4 mm or greater. The number of IOIs with a CV-identified minor FSH surge toward the end of the IOI was greater (P < 0.03) in two-wave IOIs (10/17) than in three-wave IOIs (4/18). The 17 two-wave IOIs were used for study of the temporal relationships among preovulatory follicle, FSH, LH, and estradiol. Daily growth rate of the preovulatory follicle was maximum on Days −11 to −7, minimum (P < 0.05) on Days −7 to −4, and increased (resurged, P < 0.05) on Days −4 to −3. A transient increase in FSH was maximum on mean Day −4, and the peak of a minor FSH surge occurred on Day −4.5 ± 0.2. Concentration of LH and estradiol increased between Days −5 and −4. Results demonstrated resurgence of the preovulatory follicle apparently for the first time in any species. Resurgence seemed more related temporally to the minor FSH surge than to the LH increase, but further study is needed. Results supported the novel hypotheses that a minor FSH surge near the end of the IOI is temporally associated with (1) the emergence of a minor follicular wave and (2) the resurgence in growth rate of the preovulatory follicle.  相似文献   

3.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

4.
This study evaluated the effect of removing the GnRH injection on Day 0 or the progesterone (P4) device from a GnRH, PGF2α, GnRH (GPG) + P4 program on follicular dynamics and synchronization of ovulation in dairy heifers. Friesian and Friesian × Jersey heifers, in autumn 2009 (n = 35) and spring 2010 (n = 38), were randomly allocated to one of three estrus synchronization programs. The first group (GPG + P4) received 100 μg GnRH on Day 0, a P4-releasing intravaginal device from Days 0 to 7, 500 μg PGF2α on Day 7, and 100 μg GnRH on Day 9, followed by fixed-time artificial insemination 16 to 20 hours later. The program for group 2 (GPG) was the same as group 1 with the exclusion of the P4 device. Group 3 (P + G + P4) was treated the same as group 1, except for the absence of the GnRH treatment on Day 0. Ultrasonography was performed on Days 0, 1, 2, 3, and 7 and then at 12 hourly intervals on Days 9 to 11. Dominant follicle size was affected by both treatment and day, and there was also a significant interaction (P < 0.02) between treatment and day. Mean dominant follicle size was larger in the heifers treated with P + G + P4 on Days 1 to 3 than those treated with GPG + P4 (P < 0.02) and, on Day 2, than those treated with GPG (P = 0.005). However, on Day 7, mean dominant follicle size was larger in heifers treated with GPG than heifers treated with P + G + P4 (P = 0.03). The emergence of a new follicular wave was later in heifers treated with P + G + P4 than heifers, which received a GnRH injection on Day 0 (4.3 ± 0.7 days, compared with combined GPG + P4 and GPG 3.0 ± 0.3 days; P = 0.03). The proportion of heifers that ovulated within the first 48 hours after the Day 9 injection of GnRH was not affected by treatment (GPG, 81%; GPG + P4, 84%; and P + G + P4, 100% [including early ovulation]; P = 0.11). The timing of the ovulation was not different between treatments (P = 0.97).  相似文献   

5.
An experiment was designed to examine the effect of estradiol valerate (EV) on the growth and regression of follicles of a wave and on the emergence of the next follicular wave. Twenty-six beef heifers were xamined daily by ultrasonography and randomly allocated to 1 of 4 treatment groups at the time of ovulation (Day 0): unterated control heifers and those that received 5 mg EV intramuscularly on Day 1, Day 3 or Day 6. Maximum diameter of the dominant follicle was greater (P<0.05) in control heifers than in heifers treated on Day 1 or Day 3. Mean day of onset of regression of the dominant follicle was later (P<0.05) in control heifers than in heifers treated on Day 1 but was not different from heifers treated on Day 3. In heifers treated on Day 6, cessation of growth, maximum diameter and onset of regression were not different from that of control heifers. The emergence of the next follicular wave was earlier (P<0.05) in heifers treated on Day 1 than in control heifers, whereas wave emergence was delayed (P<0.05) in heifers treated on Day 3 or Day 6. The mean day of maximum concentration of FSH prior to the emergence of the next wave was earlier in heifers treated with EV on Day 1 and later in heifers treated on Day 3 or Day 6 compared with that of the controls (P<0.05). Treatment on Day 1 or Day 3 resulted in a significant LH surge in 8 13 heifers, whereas no LH surges were detected in control heifers or in heifers treated on Day 6. The hypothesis that EV suppresses the growth of the dominant follicle, was supported. Estradiol valerate treatment resulted in early emergence of the next follicular wave in heifers treated on Day 1, but treatment on Day 3 or Day 6 resulted in delayed emergence of the next follicular wave.  相似文献   

6.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

7.
Follicle ablation has been recognized as an efficient method of follicular wave synchronization. Treatment with recombinant bovine somatotropin (BST) has been shown to enhance follicular development in Bos taurus. This experiment assessed the effects of these treatments in Nelore (B. indicus) heifers. Eight cycling Nelore heifers were randomly assigned to 3 different treatments. On Day 2 of a synchronized cycle (Day 0 = day of ovulation), heifers assigned to Treatments 1 and 2 received 2 mL of saline, whereas heifers assigned to Treatment 3 received 320 mg of BST. On Day 5, the first-wave dominant follicle was ablated by ultrasound-guided transvaginal aspiration in heifers in Treatments 2 and 3, and all heifers received an injection of prostaglandin on Day 11. Aspiration of the dominant follicle advanced and synchronized (P < 0.05) the day of second-wave emergence (6.9 +/- 0.1 vs. 8.4 +/- 0.4) and the day of the pre-wave FSH peak (6.0 +/- 0.0 vs. 6.9 +/- 0.4), and increased FSH peak concentrations (381 +/- 21 vs. 292 +/- 30; pg/mL; P < 0.01). Recombinant bovine somatotropin treatment caused a two-fold increase in plasma insulin-like growth factor-I (IGF-I) concentrations (P < 0.001) and resulted in a 36% increase in the number of small follicles (<5 mm; P < 0.001) compared with saline-treated heifers. In summary, in agreement with previous reports on B. taurus, dominant follicle aspiration synchronized ovarian follicular development, and BST treatment increased peripheral concentrations of IGF-I in Nelore heifers. Recombinant bovine somatotropin also increased the number of small follicles, but this response appeared to be inferior to that reported for B. taurus.  相似文献   

8.
Follicular Wave 1 and 2 and the associated FSH Surge 1 and 2 were used to designate the first two waves and surges of the interovulatory interval in two experiments in heifers. In experiment 1, a group with early (group E, N = 9) and late (group L, N = 5) development of the dominant follicle of Wave 1 were used as natural models to study FSH/follicle coupling. The day of wave emergence and the day of deviation in diameters between the two largest follicles were not different between groups. Emergence of Wave 2 and maximal FSH concentration in Surge 2 was approximately 1 day later (P < 0.03) in group L. Diameter of the dominant follicle of wave 1 (13.8 ± 0.3 mm vs. 12.0 ± 0.3 mm) and FSH concentrations in Surge 2 (0.29 ± 0.02 ng/mL vs. 0.21 ± 0.03 ng/mL) were first greater (P < 0.05) in group E than in group L at 4 and 5 days, respectively, after wave emergence. In experiment 2, treatment with estradiol (N = 8) when the dominant follicle of Wave 1 was ≥11 mm (Hour 0) resulted in a decrease (P < 0.02) in FSH and slower (P < 0.05) growth rate of the follicle between Hours 0 and 4. Results supported the following hypotheses: (1) the FSH surge that stimulates emergence of a follicular wave is associated with final growth of the dominant follicle of the previous anovulatory wave; and (2) suppression of FSH Surge 2 when the dominant follicle of Wave 1 is ≥11 mm is associated with a decrease in diameter. It is concluded for the first time that two-way FSH/follicle coupling in heifers continues during final growth of the dominant follicle of Wave 1 and that Surge 2 is the FSH source.  相似文献   

9.
The following aspects of follicle-stimulating hormone (FSH)-follicular relationships were studied in heifers: (1) the role of the decline in circulating levels of FSH in selection of a dominant follicle of a follicular wave; (2) the relationship of an FSH nadir (low levels between surges) to the absence of development of new follicles of a detectable diameter during the interim between the emergence of successive waves. A recombinant DNA-derived bovine FSH was used. Administration of bovine follicle-stimulating hormone (bFSH) for two days before the time of selection of the dominant follicle of the first post-ovulatory follicular wave delayed the time of divergence of the follicles into dominant and subordinates (first significant divergence: bFSH treatment before selection, Day 4.0; bFSH treatment after selection, Day 2.5; controls, Day 2.5: ovulation, Day 0). Significantly greater growth of the first and second largest subordinates occurred in the pre-selection group. A superovulatory dose of bFSH for 4 days with PGF2-induction of luteolysis resulted in multiple ovulations when begun on Day 1 (before the expected time of follicle divergence; mean 2.8 ovulations per heifer) than when begun on Day 5 (after divergence; mean 1.0 ovulation per heifer). Administration of bFSH during the expected time (Days 5 and 6) of an FSH nadir did not alter the day of detectable emergence of the next follicular wave. Results supported the following hypotheses: (1) a decline in the wave-stimulating FSH surge is an integral component of the selection mechanism that results in the divergence into dominant and subordinate follicles; (2) the nadir between FSH surges does not account directly for the absence of the development of new follicles between the emergence of waves.  相似文献   

10.
The hypothesis that ovulation-inducing factor/nerve growth factor (OIF/NGF) isolated from llama seminal plasma exerts a luteotrophic effect was tested by examining changes in circulating concentrations of LH and progesterone, and the vascular perfusion of the ovulatory follicle and developing CL. Female llamas with a growing follicle of 8 mm or greater in diameter were assigned randomly to one of three groups (n = 10 llamas per group) and given a single intramuscular dose of PBS (1 mL), GnRH (50 μg), or purified OIF/NGF (1.0 mg). Cineloops of ultrasonographic images of the ovary containing the dominant follicle were recorded in brightness and power Doppler modalities. Llamas were examined every 4 hours from the day of treatment (Day 0) until ovulation, and every other day thereafter to Day 16. Still frames were extracted from cineloops for computer-assisted analysis of the vascular area of the preovulatory follicle from treatment to ovulation and of the growing and regressing phases of subsequent CL development. Blood samples were collected for the measurement of plasma LH and progesterone concentrations. The diameter of the dominant follicle at the time of treatment did not differ among groups (P = 0.48). No ovulations were detected in the PBS group but were detected in all llamas given GnRH or OIF/NGF (0/10, 10/10, and 10/10, respectively; P < 0.0001). No difference was detected between the GnRH and OIF/NGF groups in the interval from treatment to ovulation (32.0 ± 1.9 and 30.4 ± 5.7 hours, respectively; P = 0.41) or in maximum CL diameter (13.1 ± 0.4 and 13.5 ± 0.3 mm, respectively; P = 0.44). The preovulatory follicle of llamas treated with OIF/NGF had a greater vascular area at 4 hours after treatment than that of the GnRH group (P < 0.001). Similarly, the luteal tissue of llamas treated with purified OIF/NGF had a greater vascular area than that of the GnRH group on Day 6 after treatment (P < 0.001). The preovulatory surge in plasma LH concentration began, and peaked 1 to 2 hours later in the OIF/NGF group than in the GnRH group (P < 0.05). Plasma progesterone concentration was higher on Day 6 in the OIF/NGF group than in the GnRH group (P < 0.001). Results support the hypothesis that OIF/NGF exerts a luteotrophic effect by altering the secretion pattern of LH and enhancing tissue vascularization during the periovulatory period and early stages of CL development.  相似文献   

11.
Kim UH  Suh GH  Nam HW  Kang HG  Kim IH 《Theriogenology》2005,63(1):260-268
This study evaluated the effect of GnRH or estradiol benzoate (EB) on follicular wave emergence and progesterone concentrations, and following a second injection of GnRH, synchrony of ovulation, and pregnancy rates in a controlled internal drug release (CIDR)-based timed AI (TAI) protocol in lactating Holstein cows. Cows received a CIDR device without hormone (controls), with an injection of 100 microg GnRH or with an injection of 4 mg EB. Thereafter, all received PGF(2 alpha) at the time of CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h later. Follicular wave emergence occurred within 7 days in 19/20 GnRH-treated, 14/20 EB-treated and 5/20 control cows (P < 0.05). The interval to wave emergence was the shorter and less variable (P < 0.01) in the GnRH group (2.9 +/- 0.2 days) than in the EB (4.7 +/- 0.5 days) or control (4.8 +/- 1.0 days) groups. Serum progesterone concentrations from Days 4 to 7 were higher (P < 0.01) in the GnRH-treated cows that ovulated than in those that did not ovulate, or in control and EB-treated cows. The diameters of dominant follicle on Day 7 differed among groups (P < 0.01), and the diameters of the preovulatory follicle on Day 9 were larger (P < 0.01) in the control and GnRH groups than in the EB group. The proportion of cows with synchronized ovulations did not differ among groups, but pregnancy rate to TAI was higher (P < 0.05) in the GnRH group (65%; 13/20) than in the control (30%; 6/20) or EB (35%; 7/20) groups. Results suggest that GnRH treatment of CIDR-treated lactating Holstein cows will result in synchronous follicular wave emergence, large preovulatory follicles and synchronous ovulation, resulting in an acceptable pregnancy rates to TAI.  相似文献   

12.
It was hypothesized that growth divergence of dominant and subordinate follicles during Wave 1 and growth termination of the dominant follicle would be associated with changes in the number of gonadotropin receptors on granulosa cells and estradiol in follicular fluid. To test this hypothesis, follicular development of 16 Holstein heifers was monitored by ultrasound, and follicles were collected on Days 2,4,6 and 10 (Day 0 = ovulation). Dominant follicles were compared across days, whereas dominant and largest subordinate follicles were compared on Days 2 and 4 only. The numbers of LH and FSH receptors on the granulosa cells of dominant follicles did not differ significantly over Days 2, 4, 6 and 10. In contrast, concentrations of estradiol in follicular fluid decreased (P < 0.05) from Days 2 to 10 (373 +/- 150 to 42 +/- 12 ng/ml) and concentrations of progesterone in follicular fluid increased (P < 0.05) from Days 2 to 10 (12.2 +/- 2.3 to 24.4 +/- 4.8 ng/ml). Correspondingly, the ratio of estradiol:progesterone in the dominant follicles decreased (P < 0.05) from Days 2 to 10. Comparisons between dominant and subordinate follicles indicated greater (P < 0.05) estradiol concentrations in the dominant follicle on Day 2, but the number of gonadotropin receptors was not different until Day 4. Thus, differences in concentrations of follicular fluid estradiol, but not numbers of granulosa cell gonadotropin receptors, were associated with the early growth divergence of dominant and subordinate follicles (Day 2) and the eventual growth termination of the dominant follicle (Day 10). Late divergence (Day 4) was associated with higher gonadotropin receptor numbers and follicular estradiol concentrations in the dominant than in the subordinate follicles. These results indicate that an increase in estradiol productivity of the selected dominant follicle occurred before an increase in the number of gonadotropin receptors.  相似文献   

13.
Ovarian follicular dynamics in heifers during early pregnancy   总被引:1,自引:0,他引:1  
Daily ultrasonic monitoring of individual follicles was used to compare follicular wave characteristics of nonbred (n = 6) and pregnant heifers (n = 6). The dominant follicle of the first wave (Wave 1) did not differ significantly between reproductive statuses for any endpoint. The dominant follicle of Wave 2 was the ovulatory follicle in all nonbred heifers. The maximum diameter of the dominant follicle of Wave 2 was greater (p less than 0.05) for the nonbred heifers (14.8 mm) than for the pregnant heifers (13.0 mm). The dominant follicle of Wave 3 was detected later (p less than 0.003; Day 19.7 vs. Day 17.3) and reached a greater diameter (p less than 0.05; 16.6 mm vs. 12.0 mm) in the nonbred than in the pregnant heifers. On the mean day of onset of luteolysis (Day 15.2) in the nonbred heifers, the dominant follicle was similar in diameter for the two groups. Within a few days, the follicle began to regress in the pregnant heifers but maintained or increased in diameter in the nonbred heifers so that a greater maximum diameter was attained. During Days 0 70 of pregnancy, the interval from emergence of a wave to the emergence of the next wave was constant (not significantly different; mean intervals, 8.5 9.8 days). The mean maximum diameter attained by the dominant follicles differed significantly among the first 6 follicular waves; diameter was greatest for Wave 1 (15.7 mm), smallest for Waves 2 (13.1 mm) and 3 (12.6 mm), and intermediate for Waves 4 (14.0 mm), 5 (13.7 mm), and 6 (14.5 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Nulliparous Holstein heifers were examined ultrasonically once daily during an interovulatory interval (ovulation = Day 0). Follicles with a diameter >/=4 mm were sequentially identified. Heifers were randomized into four groups (n = 4 heifers per group): untreated control heifers and those treated on Days 0 to 3, Days 3 to 6, or Days 6 to 11. Heifers designated for treatment were given an intravenous injection, twice daily, of a proteinaceous fraction of follicular fluid (PFFF; 16 ml) prepared by extracting bovine follicular fluid with activated charcoal. Mean cessation of growth of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 5.5) than in heifers treated on Days 0 to 3 (Day 1.5) or Days 3 to 6 (Day 3.5). Mean onset of regression of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 12.0) than in heifers treated on Days 0 to 3 (Day 5.0) or Days 3 to 6 (Day 7.5). Mean cessation of growth of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 3.0) than in heifers treated on Days 0 to 3 (Day 1.2). Mean onset of regression of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 7.0) than in heifers treated on Days 0 to 3 (Day 4.8). In heifers treated on Days 6 to 11, cessation of growth and onset of regression of the dominant follicle (means, Days 5.2 and 12.0, respectively) were not significantly different from those of the controls. The hypothesis that PFFF treatment on Days 0 to 3 would cause suppression of all follicles of Wave 1 was supported. The hypothesis that PFFF treatment on Days 3 to 6 would not alter growth of the dominant follicle of Wave 1 was not supported. The mean day of detection of the dominant follicle of Wave 2 was different (P<0.005) in control heifers (Day 8.5) than in heifers treated on Day 0 to 3 (Day 5.5) or Days 6 to 11 (Day 14.2). The mean length of the interovulatory interval was shorter (P<0.05) in control heifers (20.5 d) than in heifers treated on Days 6 to 11 (23.2 d). The hypothesis that PFFF treatment on Days 6 to 11 would delay the emergence of Wave 2 was supported. The proportion of heifers with 2-wave interovulatory intervals was 3 4 for control heifers and 0 4 , 1 4 , and 4 4 for heifers treated on Days 0 to 3, Days 3 to 6, and Days 6 to 11, respectively (3 4 vs 0 4 , P<0.05); the remaining heifers had 3-wave interovulatory intervals. On average, in PFFF-treated heifers, follicles stopped growing 1 d after treatment was started, and Wave 2 was detected 3 d after treatment was stopped.  相似文献   

15.
A study was designed to characterise ovarian follicular dynamics in heifers treated with porcine luteinizing hormone (pLH) or gonadotropin releasing hormone (GnRH) on days 3, 6 or 9 (ovulation = day 0), corresponding to the growing, early-static, and late-static phases of the first follicular wave. Following ovulation, 65 beef heifers were assigned, by replicate, to the following seven treatment groups: 25 mg im of pLH on days 3, 6 or 9 (n = 9 per group); 100 microg im of GnRH on days 3, 6 or 9 (n = 9 per group); or controls (no treatment; n = 11). Ovulation occurred within 36 h in 67%, 100% and 67% of heifers treated with pLH and in 89%, 56% and 22% of heifers treated with GnRH on days 3, 6 or 9, respectively (treatment-by-day interaction, P < 0.09). Combined for all treatment days, ovulation rates were 78% and 56% in pLH- and GnRH-treated groups, respectively (P < 0.09). Overall, mean day (+/- SD) of emergence of the second follicular wave in heifers that ovulated was different from that in controls or in heifers that did not ovulate (P < 0.05). Mean (+/- SD) day of emergence of the second wave occurred earlier (day 5.6+/-1.2; P < 0.05) in heifers that ovulated after treatment on day 3 (n = 14) than in controls (day 8.7+/-1.6; n = 11); however, wave emergence in all heifers treated on day 6 (day 8.1+/-0.5; n = 18) did not differ from controls, regardless of whether or not ovulation occurred. In the heifers that ovulated in response to treatment on day 9 (n = 8), the emergence of the second follicular wave was delayed (day 10.9+/-0.4; P < 0.05). The day of emergence of the second wave in the 14 treated heifers that failed to ovulate, irrespective of the day of treatment (day 8.9+/-1.4) did not differ from control heifers. The emergence of the second wave was more synchronous in day 6 heifers (regardless of whether they ovulated) and in day 9 heifers that ovulated compared to control heifers (P < 0.05). Results did not support the hypothesis that the administration of pLH or GnRH at known stages of the follicular wave in cycling heifers would consistently induce ovulation or atresia and, thereby, induce emergence of a new follicular wave at a predictable interval. New wave emergence was induced consistently (1.3 days post-treatment) only in those animals that ovulated in response to treatment. However, 22% of LH-treated heifers and 44% of GnRH-treated heifers failed to ovulate. Treatments did not induce atresia of the dominant follicle or alter the interval to new wave emergence in animals that did not ovulate in response to treatment.  相似文献   

16.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

17.
Holstein heifers were used to study effects of exogenous administration of oxytocin on luteal function and ovarian follicular development. Twelve heifers were monitored for 1 estrous cycle to confirm normal ovarian function. At the subsequent estrus, these animals were randomly assigned to 1 of 3 treatments: saline control, (Group 1, n=4), oxytocin (Group 2, n=4) and saline pregnant (Group 3, n=4). Group 2 received continuous infusion of oxytocin (1.9 mg/d) from Days 14 to 26 after estrus, while Groups 1 and 3 received saline infusion during the same period. Group 3 were artificially inseminated at estrus. Daily blood samples were collected for oxytocin and progesterone assay. Ovarian follicles and corpus luteum (CL) development were monitored daily by transrectal ultrasonography until Day 32 after estrus. Plasma progesterone (P4) concentrations prior to initiation of infusion were 7.6+/-1.3 ng/mL on Day 14. They then decreased to <1 ng/mL on Day 19 for Group 1 and on Day 28 for Group 2. The interestrous interval was longer (P <0.05) for heifers that received oxytocin infusion. During the infusion period P4 concentrations were not different (P >0.05) between Group 2 and 3 but declined gradually from Day 20 in Group 2 despite the presence of high plasma oxytocin concentrations. Control heifers had 2 waves of follicular growth, with the second dominant follicle ovulating. Three of the 4 oxytocin-infused animals had an additional wave, with the third dominant follicle ovulating. Oxytocin infusion had no effect on size of the ovulating follicle (P >0.05) and the number of Class 1 follicles (3 to 5 mm, P >0.1). Differences in the number of Class 2 follicles (6 to 9 mm) among treatments on Days 15 to 22 after estrus were not detected (P >0.1) except on Days 23 to 26, when Group 2 had fewer follicles than Group 3 (P <0.05). The results show that continuous infusion of oxytocin during normal luteolysis delays luteal regression without inhibiting follicular development.  相似文献   

18.
Synchronization of emergence of follicular waves in cattle   总被引:1,自引:0,他引:1  
In Experiment 1, heifers were randomly allocated to a control group (saline, im; n = 6) or a GnRH group (100 microg, im; n = 6). Treatment was given approximately 32 h before ovulation. The GnRH treatment shortened (P < 0.001) the time from treatment to emergence of Wave 1 and to the peak concentration of FSH associated with emergence. Administration of GnRH synchronized (less variability, P < 0.01) the time from treatment to ovulation but did not significantly synchronize follicular wave emergence, and tended (P < 0.06) to synchronize the time to the peak concentration of FSH. The mean number of follicles >5 mm per wave was higher (P < 0.01) in the GnRH group (10.7 +/- 1.3) than in the control group (5.7 +/- 0.8). In Experiment 2, either Folltropin (a porcine pituitary extract) was given or the dominant follicle of Wave 1 was aspirated 5 d after ovulation and the following wave (Wave 2) studied. Folltropin and/or aspiration shortened (<0.05) the time from treatment to emergence of Wave 2 and to the peak concentration of FSH associated with wave emergence, and all treatments synchronized (P < 0.01) wave emergence. Retrospective study indicated that the future dominant follicle could have been collected for experimental purposes with a 100% success rate if the following criteria had been used: 1) diameter of largest follicle 10 mm (largest follicle taken), 8 mm (2 largest follicles taken), or 7 mm (3 largest follicles taken); 2) diameter difference between the 2 largest follicles of 4 mm (largest follicle taken), 3 mm (2 largest follicles taken), or 2 mm (3 largest follicles taken); 3) 2 days after wave emergence (2 or 3 largest follicles taken); or 4) 5 days (largest follicle taken), 4 days (2 largest follicles taken), or 3 days (3 largest follicles taken) after treatment (Folltropin or dominant-follicle aspiration).  相似文献   

19.
The effect of the ovarian follicles on plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) before versus after the expected emergence of the ovulatory follicular wave was studied on Days 0 to 18 (Day 0 = ovulation) in four groups of mares (n = 6/group). In addition to a control group, all follicles ≥6 mm in diameter were ablated on Days 0.5, 6.5, or 12.5 in a herd of mares with reported emergence at 6 mm of the future ovulatory follicle on mean Day 10.5. Concentrations of FSH were not different between the Day-0.5 or Day-6.5 ablation groups and the corresponding controls. However, ablation on Day 12.5 resulted in an immediate FSH increase (group-by-day interaction, P < 0.003). For LH, ablation on Day 0.5 resulted in an interaction (P < 0.02), partially from lower (P < 0.05) concentrations on each of Days 15.5 to 18.0 than that in the controls, whereas ablation on Days 6.5 or 12.5 did not result in a significant group effect or interaction. Testosterone concentration, but not progesterone or estradiol concentration, was lower (P < 0.04) on Day 2 in the Day-0.5 ablation group than that in the controls. We inferred that follicles did not contain adequate FSH suppressors on Days 0.5 and 6.5 and that they were present only in the Day-12.5 ablation group or after the expected emergence of the ovulatory wave. The hypothesis of an association between low postovulatory concentrations of an ovarian steroid and low concentrations of LH after Day 15 was supported.  相似文献   

20.
Two hypotheses were tested: (1) a dominant follicle causes regression of its subordinate follicles, and (2) a dominant follicle during its growing phase suppresses the emergence of the next wave. Cyclic heifers were randomly assigned to one of four groups (6 heifers/group): cauterization of the dominant follicle of Wave 1 or sham surgery (control) on Day 3 or Day 5 (day of ovulation = Day 0). Ultrasonic monitoring of individually identified follicles was done once daily throughout the interovulatory interval. The onset of regression (decreasing diameter) of the largest subordinate follicle of Wave 1 was delayed (P less than 0.01) by cauterization of the dominant follicle of Wave 1 on Day 3 compared to controls (mean onset of regression, Days 10.8 +/- 2.1 vs 4.3 +/- 0.4). Cauterization of the dominant follicle of Wave 1 on Days 3 or 5 caused early emergence (P less than 0.01) of Wave 2 when compared to controls (Day-3 groups: Days 5.5 +/- 0.4 vs 9.6 +/- 0.7; Day-5 groups: Days 7.0 +/- 0.3 vs 9.1 +/- 0.4). The results supported the two hypotheses. In addition, cauterization of the dominant follicle of Wave 1 on Days 3 or 5 increased the incidence of 3-wave interovulatory intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号