首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of the aquaculture production is increasing with the declining global fish stocks, but early sexual maturation in several farmed species reduces muscle growth and quality, and escapees could have a negative impact on wild populations. A possible solution to these problems is the production of sterile fish by ablation of the embryonic primordial germ cells (PGCs), a technique developed in zebrafish. Cell-specific regulation of mRNA stability is crucial for proper specification of the germ cell lineage and commonly involves microRNA (miRNA)-mediated degradation of targeted mRNAs in somatic cells. This study reports on the functional roles of conserved motifs in the 3′ untranslated region (UTR) of the miRNA target gene nanos3 identified in Atlantic cod, Atlantic salmon, and zebrafish. The 3′UTR of cod nanos3 was sufficient for targeting the expression of green fluorescent protein (GFP) to the presumptive PGCs in injected embryos of the three phylogenetically distant species. 3′UTR elements of importance for PGC-specific expression were further examined by fusing truncated 3′UTR variants of cod nanos3 to GFP followed by injections in zebrafish embryos. The expression patterns of the GFP constructs in PGCs and somatic cells suggested that the proximal U-rich region is responsible for the PGC-specific stabilization of the endogenous nanos3 mRNA. Morpholino-mediated downregulation of the RNA-binding protein Dead end (DnD), a PGC-specific inhibitor of miRNA action, abolished the fluorescence of the PGCs in cod and zebrafish embryos, suggesting a conserved DnD-dependent mechanism for germ cell survival and migration.  相似文献   

2.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

3.
Nanos proteins are essential for developing primordial germ cells (PGCs) in both invertebrates and vertebrates. In invertebrates, also contribute to the patterning of the anterior-posterior axis of the embryo and the neural development. In vertebrates, however, besides the role of Nanos proteins in PGC development, the biological functions of the proteins in normal development have not yet been identified. Here, we analyzed the expression and function of nanos1 during craniofacial development in zebrafish. nanos1 was expressed in the pharyngeal endoderm and endodermal pouches essential for the development of facial skeletons and endocrine glands in the vertebrate head. However, no craniofacial defects, such as abnormal pouches, hypoplasia of the thymus, malformed facial skeletons, have been found in nanos1 knockout animals. The normal craniofacial development of nanos1 knockout animals is unlikely a consequence of the genetic redundancy of Nanos1 with Nanos2 or Nanos3 or a result of the genetic compensation for the loss of Nanos1 by Nanos2 or Nanos3 because the expression of nanos2 and nanos3 was rarely seen in the pharyngeal endoderm and endodermal pouches in wild-type and nanos1 mutant animals during craniofacial development. Our findings suggest that nanos1 expression in the pharyngeal endoderm might be dispensable for craniofacial development in zebrafish.  相似文献   

4.
Primordial germ cells (PGCs) are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4) are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica) embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio) for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders).  相似文献   

5.
Early in embryonic development, primordial germ cells (PGCs) are specified and migrate from the site of their origin to where the gonad develops, following a specific route. Heparan sulfate glycosaminoglycans (HS-GAGs) are ubiquitous in extracellular matrix and the cell surface and have long been speculated to play a role during the migration of PGCs. In line with this speculation, whole-mount immunohistochemistry revealed the existence of HS-GAGs in the vicinity of migrating PGCs in early zebrafish embryos. To examine the roles of HS-GAGs during PGC migration, zebrafish heparanase 1 (hpse1), which degrades HS-GAGs, was cloned and overexpressed specifically in PGCs. The guidance signal for the migration of PGCs was disrupted with the overexpression of hpse1, as cluster formation and marginal localization at the blastoderm were significantly perturbed at 6 hours postfertilization. Furthermore, the number of PGCs was significantly decreased with the lack of vicinal HS-GAGs, as observed in the whole-mount in situ hybridization and quantitative PCR of the PGC marker gene vasa. Terminal deoxynucleotidyl transferase dUTP nick-end labeling indicated significantly increased apoptosis in PGCs overexpressing hpse1, suggesting that HS-GAGs contribute to the maintenance of PGC survival. In conclusion, HS-GAGs play multifaceted roles in PGCs during migration and are required both for guidance signals and multiplication of PGCs.  相似文献   

6.
No information exists on the identification of primordial germ cells (PGCs) in the super‐order Protacanthopterygii, which includes the Salmonidae family and Atlantic salmon (Salmo salar L.), one of the most commercially important aquatic animals worldwide. In order to identify salmon PGCs, we cloned the full‐length cDNA of vasa, dead end (dnd), and lymphocyte antigen 75 (ly75/CD205) genes as germ cell marker candidates, and analyzed their expression patterns in both adult and embryonic stages of Atlantic salmon. Semi‐quantitative RT‐PCR results showed that salmon vasa and dnd were specifically expressed in testis and ovary, and vasa, dnd, and ly75 mRNA were maternally deposited in the egg. vasa mRNA was consistently detected throughout embryogenesis while dnd and ly75 mRNA were gradually degraded during cleavages. In situ analysis revealed the localization of vasa and dnd mRNA and Ly75 protein in PGCs of hatched larvae. Whole‐mount in situ hybridization detected vasa mRNA during embryogenesis, showing a distribution pattern somewhat different to that of zebrafish; specifically, at mid‐blastula stage, vasa‐expressing cells were randomly distributed at the central part of blastodisc, and then they migrated to the presumptive region of embryonic shield. Therefore, the typical vasa localization pattern of four clusters during blastulation, as found in zebrafish, was not present in Atlantic salmon. In addition, salmon PGCs could be specifically labeled with a green fluorescence protein (GFP) using gfp‐rt‐vasa 3′‐UTR RNA microinjection for further applications. These findings may assist in understanding PGC development not only in Atlantic salmon but also in other salmonids. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The discrimination and differentiation of germ cells from somatic cells is a fundamental issue during development. The early specification of mouse primordial germ cells (PGCs) is achieved by the induction of Blimp1, a key regulator of germ cells. Nanos3 is one of the genes activated in early PGCs and prevents apoptosis during their migration stage. Once PGCs enter the embryonic gonads, they differentiate according to the somatic sex of the organism. During this process, Nanos2 plays an important role as it promotes male germ cell pathway by suppressing the female fate. In this review, the process of germ cell development in the mouse is discussed with a particular focus on the functions of the key proteins, Blimp1, Nanos, and Dead end1.  相似文献   

8.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

9.
Arrizabalaga G  Lehmann R 《Genetics》1999,153(4):1825-1838
The Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This "tail region" of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis.  相似文献   

10.
Primordial germ cells (PGCs), specified early in development, proliferate and migrate to the developing gonad before sexual differentiation occurs in the embryo and eventually give rise to spermatogonia or oogonia. In this study, we discovered that nanos3 3′UTR, a common method used to label PGCs, not only directed PGC-specific expression of DsRed but also prolonged this expression up to 26 days post fertilization (dpf) when DsRed-nanos3 3′UTR hybrid mRNAs were introduced into 1- to 2-cell-stage embryos. As such, we employed this knowledge to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and bone morphogenetic protein 4 (Bmp4) in the PGCs and evaluate their effects on PGC development in vivo for over a period of 3 weeks. The results show that expression of Fgf2 significantly increased PGC number at 14- and 21-dpf while Bmp4 resulted in severe ventralization and death of the embryos by 3 days. Expression of Lif resulted in a significant disruption of PGC migration. Mopholino knockdown experiments indicated that Lif illicited its effect on PGC migration through Lif receptor a (Lifra) but not Lifrb. The general approach described in this study could be used to achieve prolonged PGC-specific expression of other proteins to investigate their roles in germ cell and gonad development. The results also indicate that zebrafish PGCs have a mechanism to stabilize and prolong the expression of mRNA that carries nanos3 3′UTR. Understanding this mechanism may make it possible to achieve prolonged RNA expression in other cell types.  相似文献   

11.
NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.  相似文献   

12.
13.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

14.
Primordial germ cells (PGCs) generate gametes, the only cells that can transmit genetic information to the next generation. A previous report demonstrated that a fusion construct of green fluorescent protein (gfp) and zebrafish nos 1 3UTR mRNA could be used to label PGCs in a number of fish species. Here, we sought to exploit this labeling strategy to isolate teleost PGCs by flow cytometry (FCM), and to use these isolated PGCs to examine germ cell migration to the gonadal region. In zebrafish, medaka and goldfish, the PGCs were labeled by injecting the gfp-nos1 3UTR mRNA into 1- 4 cell embryos. When the embryos had developed to the somitogenesis or later stages, they were enzymatically disaggregated and GFP positive cells isolated using FCM. PGCs in the different species clustered in the same segments of the FCM scatter diagrams for total embryonic cells produced by plotting the forward scatter intensity against GFP intensity. In situ hybridization showed that the sorted zebrafish cells expressed vasa RNA in their cytoplasm, suggesting that they were PGCs. When the migration ability of the sorted cells from zebrafish was examined in an in vivo transplantation experiment, approximately 30% moved to the gonadal region of host embryos. These observations demonstrate that PGCs can be isolated without use of transgenic fishes and that the isolated PGCs retain the ability to migrate. Our data indicate that this technique will be of value for isolating PGCs from a range of fish species.  相似文献   

15.
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.  相似文献   

16.
Germ line development in fishes   总被引:3,自引:0,他引:3  
  相似文献   

17.
为了标记团头鲂(Megalobrama amblycephala)的原始生殖细胞(Primordial Germ Cells, PGCs), 首次克隆并鉴定了团头鲂nanos3基因(mananos3)。mananos3全长1027 bp, 包括48 bp 5′UTR (5′untranslated Region), 490 bp 3′UTR和489 bp开放阅读框(Open Reading Frame, ORF)。该基因编码162个氨基酸。通过序列比对发现Mananos3蛋白和其他物种Nanos蛋白一样, 存在一个保守的RNA结合功能域, 该功能域包含一个锌指基序(Motif)。系统发育树结果显示, Mananos3与鲤(Cyprinus carpio)的Nanos3最为相近。半定量和定量PCR结果表明, mananos3具有较高的母源表达, 并在胚胎发育早期高量表达, 而在1000细胞期之后表达量逐渐降低。在成体组织中, mananos3仅在卵巢中检测到表达。mananos3和斑马鱼(Danio rerio) nanos3 (zfnanos3)的3′UTR均可以介导绿色荧光蛋白特异标记团头鲂和斑马鱼胚胎发育早期的PGCs, 但是mananos3的3′UTR能够更特异地标记团头鲂的PGCs。通过比对mananos3和zfnanos3的3′UTR发现, mananos3 的3′UTR中有一个非经典的miR430识别位点(GCACTA)。通过对该位点的突变研究证实其有利于nanos3在非PGCs组织中的降解。综上所述, 团头鲂mananos3的3′UTR序列中的非经典miR430识别位点(GCACTA)可能与介导报告基因在PGCs中特异表达相关。  相似文献   

18.
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3′-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction.  相似文献   

19.

Background

During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3′UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression.

Methodology/Principal Findings

Using a GFP reporter mRNA that was fused with tdrd7 3′UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3′UTR of dazl mRNA, another germline mRNA targeted by miR-430.

Conclusions/Significance

Our present study indicated that DAZL acts as an “anti-miRNA factor” during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control.  相似文献   

20.
The nanos gene encodes a zinc-finger protein which is required for the migration and differentiation of primordial germ cells as well as for their fate maintenance. In this study, a 1913 bp nanos gene was cloned and characterized in silkworm (Bombyx mori). RT-PCR and Western blot analysis showed that the nanos was expressed in developing embryos and various silkworm larval tissues. The expression patterns of Nanos and Vasa in silkworm larval gonads were analyzed using immunohistochemistry. It was found that, in silkworm larval ovaries, the Nanos and Vasa proteins were expressed in oocytes. While in testes, high expression of Nanos and Vasa was detected in spermatogonia and relatively weaker expression was found in spermatocytes at latter stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号