首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fertility control is a potential method for managing overabundant wildlife populations; however, current technology is limited by duration of treatment efficacy and unacceptable side effects. The objective of this study was to determine the efficacy of a single immunization with gonadotropin-releasing hormone (GnRH) vaccine to suppress reproductive function in pregnant female elk and to evaluate potential behavioral and pathological side effects of treatment. Eighteen captive adult female elk were randomly allocated to one of two experimental groups. Ten females were administered a conjugated and adjuvanted GnRH vaccine intramuscularly, and eight elk received an adjuvant sham vaccine without conjugated GnRH. We compared success of existing pregnancy, neonatal survival, subsequent fertility, reproductive behavior rates, and side effects of treatment between January 2006 and January 2010. The GnRH vaccination did not affect existing pregnancy or calf survival during the year that it was applied; however, it reduced the proportion of pregnant females for 3 yr. Male precopulatory behavior rates exhibited toward GnRH-vaccinated females tended to be greater than those directed at sham-vaccinated females during the second half of the breeding season, when GnRH vaccinates continued to be proceptive. Strong immune and inflammatory responses, including robust GnRH antibody concentrations in GnRH vaccinates, and sterile pyogranulomatous injection site abscesses in both groups, were consistent with vaccination. In conclusion, this GnRH vaccine resulted in prolonged, albeit reversible, impairment of fertility, and is associated with extended reproductive behaviors and partial suppression of hypothalamic-pituitary-gonadal axis function in captive female elk.  相似文献   

2.
The Cape ground squirrel Xerus inauris is unusual among social mammals as it exhibits a low reproductive skew, being a facultative plural breeder with not all females breeding within a group. We investigated pituitary function to assess whether there was reproductive inhibition at the level of the pituitary and potentially the hypothalamus in breeding and non-breeding female Cape ground squirrels. We did so during the summer and winter periods by measuring luteinizing hormone (LH) responses to single doses of 2 g exogenous gonadotropin-releasing hormone (GnRH) and physiological saline administered to 42 females from 11 colonies. Basal LH concentrations of females increased in response to the GnRH challenge. Basal plasma LH concentrations were greater during winter, when most oestrus events are observed. However, we found no differences in plasma LH concentrations between breeding and non-breeding females. We showed that the anterior pituitary of non-breeding female ground squirrels is no less sensitive to exogenously administered GnRH than that of breeding females. We therefore concluded that the pituitary is no more active in breeding than non-breeding females. The lack of differentiation in response to GnRH suggests that either non-breeding females have ovaries that are less sensitive to LH or that they refrain from sexual activity with males through an alternative mechanism of self-restraint.  相似文献   

3.
The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13–20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47–52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.  相似文献   

4.
ABSTRACT We analyzed counts of northern Yellowstone elk (Cervus elaphus) in Yellowstone National Park, Wyoming, USA, over 70 years to evaluate the effects of changing management on population trends. Population reduction efforts and hunter harvests during 1932–1968 removed 71,330 elk and decreased estimated abundance from 16,000 to 6,000 elk. Abundance increased to approximately 17,000 elk (λ = 1.19) when removals ceased and harvests were very small during 1969–1975. Moderate to liberal hunter harvests of antlerless elk outside the Park during 1976–2004 removed a relatively consistent proportion (26 ± 0.1 [SD]%) of females that migrated outside the park, mostly from prime-age (3–15 yr) classes with high reproductive value. Substantial winterkill was infrequent (1989, 1997), but it significantly reduced calf survival when it occurred. Wolves (Canis lupus) were reintroduced in 1995–1996 and rapidly increased in abundance (λ = 1.23) and distribution. Estimated wolf kill of elk now exceeds hunter harvest, but has a smaller effect on population dynamics because wolves concentrate on calves and older females (>14 yr) with low reproductive value. During 1995–2004, estimated abundance decreased from 23,000 to 12,000 elk. The recent ratio of wolves to elk is relatively low compared to the estimated equilibrium ratio, suggesting that the wolf population may yet increase in the future. Thus, reduction of harvests of prime-aged female elk to decrease removals of animals with high reproductive value and increase adult female survival appears essential. We analyzed the relative impact of removals by hunters and by wolves using Fisher's (1930) reproductive value and found that the impact of hunters is far more important than that by wolves, a finding of broad significance.  相似文献   

5.
The perinatal nutritional environment can permanently influence body weight, potentially leading to changes in puberty onset and reproductive function. We hypothesized that perinatal under- or overfeeding would alter puberty onset and influence concentrations of a neuropeptide crucial for successful puberty, kisspeptin. We manipulated Wistar rat litter sizes to derive small (SL), control (CL), and large (LL) litters containing 4, 12, and 20 rat pups respectively. This manipulation results in an overweight phenotype in SL rats and a lean phenotype in LL that persists throughout life. To investigate whether successful puberty onset is affected by neonatal under- or overfeeding, we examined indices of growth and development, including the onset of puberty, as well as the central expression of Kiss1 mRNA in these pups. Male LL rats reached puberty later than those from CL. These males also had reduced plasma testosterone and elevated 17beta-estradiol concentrations at puberty. The age at puberty onset was not affected in SL males despite accelerated growth. In females, puberty onset was not significantly delayed by having a lean phenotype, and steroid hormones were not affected. The age at onset was, however, younger in the SL females. Kiss1 mRNA in the hypothalamus was not affected by neonatal nutrition either at puberty or 7 days later. Our findings show early life underfeeding in males and overfeeding in females significantly affects puberty onset, altering steroid hormone concentrations in males, but this is not related to changes in hypothalamic kisspeptin.  相似文献   

6.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

7.
Hypothalamic neurons, which produce the kisspeptin family of peptide hormones (Kp), are critical for initiating puberty and maintaining estrous cyclicity by stimulating gonadotropin-releasing hormone (GnRH) release. Conversely, RFamide-related peptide-3 (RFRP3) neurons inhibit GnRH activity. It has previously been shown that neonatal exposure to bisphenol A (BPA) can alter the timing of female pubertal onset and induce irregular estrous cycles or premature anestrus. Here we tested the hypothesis that disrupted ontogeny of RFamide signaling pathways may be a mechanism underlying advanced puberty. To test this, we used a transgenic strain of Wistar rats whose GnRH neurons express enhanced green fluorescent protein. Pups were exposed by daily subcutaneous injection to vehicle, 17beta-estradiol (E2), 50 μg/kg BPA, or 50 mg/kg BPA, from Postnatal Day (PND) 0 through PND 3, and then cohorts were euthanized on PNDs 17, 21, 24, 28, and 33 (5-8 animals per age per exposure; males were collected on PNDs 21 and 33). Vaginal opening was advanced by E2 and 50 μg/kg BPA. On PND 28, females exposed to E2 and 50 μg/kg BPA had decreased RFRP-3 fiber density and contacts on GnRH neurons. RFRP3 perikarya were also decreased in females exposed to 50 μg/kg BPA. Data suggest that BPA-induced premature puberty results from decreased inhibition of GnRH neurons.  相似文献   

8.
Brucella abortus strain RB51 is used as a vaccine because it induces antibodies that do not react on standard serologic tests for brucellosis allowing differentiation between vaccination and infection. Strain RB51 was evaluated in captive elk (Cervus elaphus) to determine if vaccination protected against abortion following experimental challenge. Thirty elk were vaccinated intramuscularly with 1.0 x 10(10) colony-forming units (CFU) of strain RB51 in March 1998. Fourteen of these were given a booster dose of 1.13 x 10(10) CFU exactly 1 yr later. All vaccinated elk seroconverted via a modified dot blot assay to strain RB51 with the booster group having higher titers (P < or = 0.001). Seventeen other elk served as unvaccinated controls. All elk were bred and determined pregnant using pregnancy-specific protein B analysis. Elk were challenged in March 2000 with 1.1 x 10(7) CFU of B. abortus strain 2308 administered intraconjunctivally and all elk seroconverted to strain 2308. Fifteen of 17 control elk aborted; 16 of 16 elk given a single vaccination aborted (P = 0.44); and 13 of 14 elk given a booster aborted (P = 0.86). There were two viable calves in the control group and one in the booster group. Strain 2308 was recovered from fetuses and nonviable calves in all groups. Based on the results of this and other studies, the use of strain RB51 to prevent abortion in elk cannot be recommended.  相似文献   

9.
The effects of breeding season and reproductive status on male and female reproduction were investigated in the common mole-rat, Cryptomys hottentotus hottentotus, a cooperatively breeding rodent which exhibits a unique combination of seasonal breeding and a reproductive division of labor. Pituitary function was examined by measuring the luteinizing hormone (LH) responses to single doses of 2 microg exogenous gonadotrophin-releasing hormone (GnRH) and physiological saline in 69 males and 58 females from 35 wild caught colonies. Neither males nor females exhibited any apparent manifestation of season on basal LH concentrations or on pituitary sensitivity to stimulation by exogenous GnRH. The continuance of reproductive function during the nonbreeding period is essential in common mole-rat males and females, as this period coincides with the period of maximal dispersal opportunity in the winter rainfall area they inhabit. Normal circulating levels of reproductive hormones in dispersing animals may aid intersexual recognition, assist pairbond formation, and thus prime animals for independent reproduction. Circulating basal concentrations of LH as well as LH levels measured in response to a single exogenous GnRH challenge were not significantly different between the reproductive and non-reproductive groups of either sex, suggest the absence of a physiologically well-defined suppression of reproduction in subordinate common mole-rats.  相似文献   

10.
Madgwick S  Evans AC  Beard AP 《Theriogenology》2005,63(8):2323-2333
In heifer calves, an early transient increase in circulating concentrations of LH is associated with early follicular development and is thought to regulate the timing of puberty. In an attempt to hasten the onset of sexual maturity, the early rise in LH concentration was advanced by injecting heifer calves with 120 ng/kg of GnRH (n=6) twice daily from 4 to 8 weeks of age; control calves received saline (n=6). Blood samples were collected every 15 min for 10h at 4, 8, 14, 20, 26, 32, 38, 44 and 50 weeks of age. Treatment with GnRH increased mean circulating concentrations of LH at 8 weeks of age (P<0.05), LH pulse frequency at 4 and 8 weeks of age (P<0.05), and reduced the mean age at puberty by 6 weeks (56.8+/-1.7 versus 62.8+/-2.4 weeks of age, for GnRH treated and control calves, respectively; P=0.04). Body weight gain was greater in GnRH-treated calves than control calves (P<0.05), and the rate of weight gain was shown to be a significant covariate within age at puberty. In conclusion, we suggest that the timing of the early rise in LH concentrations is a critical signal involved in the timing of puberty in heifers.  相似文献   

11.
ABSTRACT Overabundant elk (Cervus elaphus) populations have become a significant problem in many areas of North America. This is particularly true for protected areas where high densities of elk can cause long-term ecological degradation. When lethal control is not acceptable in these environments, resource managers must often consider alternative methods for reducing the size of resident elk populations. A potential management alternative is controlling the fertility of female elk. A promising new approach to wildlife contraception involves the use of biodegradable implants containing the gonadotropin-releasing hormone (GnRH) agonist leuprolide. During fall 2002-spring 2004, we compared pregnancy rates, reproductive behavior, daily activity patterns, and body condition of 17 free-ranging female elk treated with a leuprolide formulation with 17 untreated females, in Rocky Mountain National Park, Colorado, USA. After treatment, the pregnancy rate of treated elk was 0%, whereas 79% of control elk became pregnant. The effects of treatment were reversed the subsequent year with the pregnancy rate of treated females 100% compared with 91% for controls. Reproductive behaviors were similar for treated and control elk during the breeding and postbreeding seasons; treated elk did not exhibit postrut reproductive behaviors. Moreover, we found no differences in daily activity patterns of experimental groups during the breeding or postbreeding seasons. Treated elk did not show improved body condition over pregnant females. Instead, treated females catabolized proportionately more body fat during winter after treatment and at a higher rate than pregnant control elk. However, this effect was reversed the next spring with no difference in body fat between treated and control elk. We conclude from this experiment that leuprolide, administered as a controlled release formulation, offers a safe and effective method of controlling fertility in free-ranging female elk. However, practical application is limited by treatment duration and the need to treat females before the breeding season.  相似文献   

12.
Objectives were to determine if neuropeptide Y (NPY) had direct effects GnRH induced secretion of LH from the anterior pituitary gland, and if endogenous steroids modulated the effect of NPY. To accomplish these objectives, 15 Hereford heifers were assigned to one of three ovarian status groups: follicular, luteal, or ovariectomized. One animal from each of the three ovarian status groups was slaughtered on each of 5 days and anterior pituitary gland harvested. Anterior pituitary gland cells within ovarian status were equally distributed and randomly assigned to one of three cell culture treatments: no NPY or GnRH (control), 10 nM GnRH, or 100 nM NPY+10 nM GnRH. Anterior pituitary cell cultures were incubated with or without NPY for 4 h and further incubated for an additional 2 h with or without GnRH and supernatant collected for quantification of LH. Treatment of anterior pituitary cell cultures with GnRH or GnRH+NPY did not affect LH release in cultures obtained from follicular (S.E.=5%; P=0.58) or ovariectomized (S.E.=7%; P=0.22) heifers. Both GnRH and GnRH+NPY increased LH release from anterior pituitary cell cultures from heifers in the luteal phase (S.E.=14%; P < or = 0.05) compared to control cultures. Cultures from luteal phase heifers treated with GnRH did not differ from those treated with GnRH+NPY (P=0.34). These data provide evidence to suggest that effects of NPY on LH release may occur primarily at the level of the hypothalamus.  相似文献   

13.
In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.  相似文献   

14.
In bull calves an early transient increase in circulating concentrations of LH occurs between 6 and 20 weeks of age. This has been shown to influence reproductive development and performance later in life. In an attempt to hasten the onset of sexual maturity, bull calves (Hereford x Charolais) were treated (im) with 120 ng/kg of GnRH (n=6) twice every day from 4 to 8 weeks of age; control calves received saline (n=6). Injection of GnRH resulted in an LH pulse in all animals. GnRH treated bulls displayed more rapid testicular growth rates between 22 and 44 weeks of age. Sexual maturity (SC>or=28 cm) was achieved earlier in GnRH treated bulls compared to saline treated bulls (41.7+/-2.22 and 47.0+/-0.45 weeks of age, respectively) and this was confirmed by age of sexual maturity based on ejaculate characteristics (>50 million spermatozoa, >10% motility; 45.0+/-0.86 and 49.0+/-1.13 weeks of age for GnRH and control treated bull calves, respectively; P<0.05). We concluded that treatment with GnRH, twice daily, from 4 to 8 weeks of age, prior to the endogenous early increase in plasma LH concentrations, could increase in plasma LH concentrations, advance testicular development and reduce age at puberty in beef bull calves. This may provide the basis for a simple regimen to hasten sexual development in the bull calf.  相似文献   

15.
In mammals, sex specialization is reflected by differences in brain anatomy and function. Measurable differences are documented in reproductive behavior, cognition, and emotion. We hypothesized that gonadotropin-releasing hormone (GnRH) plays a crucial role in controlling the extent of the brain's sex specificity and that changes in GnRH action during critical periods of brain development, such as puberty, will result in altered sex-specific behavioral and physiological patterns. We blocked puberty in half of the 48 same-sex Scottish mule Texel cross sheep twins with GnRH analog (GnRHa) goserelin acetate every 3 weeks, beginning just before puberty. To determine the effects of GnRHa treatment on sex-specific behavior and emotion regulation in different social contexts, we employed the food acquisition task (FAT) and measurement of heart rate variability (HRV). ANOVA revealed significant sex and sex × treatment interaction effects, suggesting that treated males were more likely to leave their companions to acquire food than untreated, while the opposite effect was observed in females. Concordant results were seen in HRV; treated males displayed higher HRV than untreated, while the reverse pattern was found in females, as shown by significant sex and sex × treatment interaction effects. We conclude that long-term prepubertal GnRHa treatment significantly affected sex-specific brain development, which impacted emotion and behavior regulation in sheep. These results suggest that GnRH is a modulator of cognitive function in the developing brain and that the sexes are differentially affected by GnRH modulation.  相似文献   

16.
Puberty is a time of significant change in preparation for adulthood. Here, we examined how stressful experience affects cognitive and related hormonal responses in male and female rats prior to, during and after puberty. Groups were exposed to an acute stressor of brief periodic tailshocks and tested 24 h later in an associative memory task of trace eyeblink conditioning. Exposure to the stressor did not alter conditioning in males or females prior to puberty but enhanced conditioning in both males and females during puberty. The enhancement occurred in pubescent females irrespective of the estrous cycle. In adulthood, sex differences in trace conditioning and the response to stress emerged: females outperformed males under unstressed conditions, but after stressor exposure, trace conditioning in females was impaired whereas that in males was enhanced. These differences were not related to changes in gross motor activity or other nonspecific measures of performance. The effects of acute stress on corticosterone, estradiol, progesterone, and testosterone were also measured. Stressor exposure increased the concentration of corticosterone in all age groups, although sex differences were only evident in adults. All reproductive hormones except estradiol increased with age in a predictable and sex dependent fashion and none were affected by stressor exposure. Estradiol decreased in male rats across age, and remained stable for female rats. Together, these data indicate that males and female respond similarly to learning opportunities and stressful experience before and during puberty; it is in adulthood that sex differences and the opposite responses to stress arise.  相似文献   

17.
18.
Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity.  相似文献   

19.
The introduction of a novel male stimulates the hypothalamic-pituitary-gonadal axis of female sheep during seasonal anestrus, leading to the resumption of follicle maturation and ovulation. How this pheromone cue activates pulsatile secretion of gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) is unknown. We hypothesised that pheromones activate kisspeptin neurons, the product of which is critical for the stimulation of GnRH neurons and fertility. During the non-breeding season, female sheep were exposed to novel males and blood samples collected for analysis of plasma LH profiles. Females without exposure to males served as controls. In addition, one hour before male exposure, a kisspeptin antagonist (P-271) or vehicle was infused into the lateral ventricle and continued for the entire period of male exposure. Introduction of a male led to elevated mean LH levels, due to increased LH pulse amplitude and pulse frequency in females, when compared to females not exposed to a male. Infusion of P-271 abolished this effect of male exposure. Brains were collected after the male effect stimulus and we observed an increase in the percentage of kisspeptin neurons co-expressing Fos, by immunohistochemistry. In addition, the per-cell expression of Kiss1 mRNA was increased in the rostral and mid (but not the caudal) arcuate nucleus (ARC) after male exposure in both aCSF and P-271 treated ewes, but the per-cell content of neurokinin B mRNA was decreased. There was also a generalized increase in Fos positive cells in the rostral and mid ARC as well as the ventromedial hypothalamus of females exposed to males. We conclude that introduction of male sheep to seasonally anestrous female sheep activates kisspeptin neurons and other cells in the hypothalamus, leading to increased GnRH/LH secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号