首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay that measures synchronized, processive DNA replication by Escherichia coli DNA polymerase III holoenzyme was used to reveal replacement of pol III by the specialized lesion bypass DNA polymerase IV when the replicative polymerase is stalled. When idled replication is restarted, a rapid burst of pol III-catalyzed synthesis accompanied by approximately 7-kb full-length products is strongly inhibited by the presence of pol IV. The production of slower-forming, shorter length DNA reflects a rapid takeover of DNA synthesis by pol IV. Here we demonstrate that pol IV rapidly (<15 s) obstructs the stable interaction between pol III* and the beta clamp (the lifetime of the complex is >5 min), causing the removal of pol III* from template DNA. We propose that the rapid replacement of pol III* on the beta clamp with pol IV is mediated by two processes, an interaction between pol IV and the beta clamp and a separate interaction between pol IV and pol III*. This newly discovered property of pol IV facilitates a dynamic exchange between the two free polymerases at the primer terminus. Our study suggests a model in which the interaction between pol III* and the beta clamp is mediated by pol IV to ensure that DNA replication proceeds with minimal interruption.  相似文献   

2.
Certain replication mutations lead in Escherichia coli to a specific reaction named replication fork reversal: at blocked forks, annealing of the nascent strands and pairing of the template strands form a four-way junction. RuvABC-catalysed resolution of this Holliday junction causes chromosome double-strand breaks (DSBs) in a recBC context and therefore creates a requirement for the recombination proteins RecBC for viability. In the present work, two mutants were tested for replication fork reversal: a dnaEts mutant and a dnaNts mutant, affected in the alpha (polymerase) and beta (processivity clamp) subunits of DNA polymerase III holoenzyme respectively. In the dnaEts recB strain, RuvABC-dependent DSBs caused by the dnaEts mutation occurred at 37 degrees C or 42 degrees C, indicating the occurrence of replication fork reversal upon partial or complete inactivation of the DNA polymerase alpha subunit. DSB formation was independent of RecA, RecQ and the helicase function of PriA. In the dnaNts recB mutant, RuvABC-dependent DSB caused by the dnaNts mutation occurred only at semi-permissive temperature, 37 degrees C, indicating the occurrence of replication fork reversal in conditions in which the remaining activity of the beta clamp is sufficient for viability. In contrast, the dnaNts mutation did not cause chromosome breakage at 42 degrees C, a temperature at which DnaN is totally inactive and the dnaNts mutant is inviable. We propose that a residual activity of the DNA polymerase III beta clamp is required for replication fork reversal in the dnaNts mutant.  相似文献   

3.
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.  相似文献   

4.
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.  相似文献   

5.
Sliding clamps are loaded onto DNA by ATP-dependent clamp loader complexes. A recent crystal structure of a clamp loader-clamp complex suggested an unexpected mechanism for DNA recognition, in which the ATPase subunits of the loader spiral around primed DNA. We report the results of fluorescence-based assays that probe the mechanism of the Escherichia coli clamp loader and show that conserved residues clustered within the inner surface of the modeled clamp loader spiral are critical for DNA recognition, DNA-dependent ATPase activity and clamp release. Duplex DNA with a 5'-overhang single-stranded region (corresponding to correctly primed DNA) stimulates clamp release, as does blunt-ended duplex DNA, whereas duplex DNA with a 3' overhang and single-stranded DNA are ineffective. These results provide evidence for the recognition of DNA within an inner chamber formed by the spiral organization of the ATPase domains of the clamp loader.  相似文献   

6.
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.  相似文献   

7.
Sutton MD  Duzen JM 《DNA Repair》2006,5(3):312-323
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.  相似文献   

8.
Wagner J  Fujii S  Gruz P  Nohmi T  Fuchs RP 《EMBO reports》2000,1(6):484-488
The recent discovery of a new family of ubiquitous DNA polymerases involved in translesion synthesis has shed new light onto the biochemical basis of mutagenesis. Among these polymerases, the dinB gene product (Pol IV) is involved in mutagenesis in Escherichia coli. We show here that the activity of native Pol IV is drastically modified upon interaction with the β subunit, the processivity factor of DNA Pol III. In the absence of the β subunit Pol IV is strictly distributive and no stable complex between Pol IV and DNA could be detected. In contrast, the β clamp allows Pol IV to form a stable initiation complex (t1/2 ≈ 2.3 min), which leads to a dramatic increase in the processivity of Pol IV reaching an average of 300–400 nucleotides. In vivo, the β processivity subunit may target DNA Pol IV to its substrate, generating synthesis tracks much longer than previously thought.  相似文献   

9.
Sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. The Escherichia coli gamma complex loads the beta sliding clamp onto DNA in an ATP-dependent reaction in which ATP binding and hydrolysis modulate the affinity of the gamma complex for beta and DNA. This is the second of two reports (Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4376-4385) addressing the question of how ATP binding and hydrolysis regulate specific interactions with DNA and beta. Mutations were made to an Arg residue in a conserved SRC motif in the delta' and gamma subunits that interacts with the ATP site of the neighboring gamma subunit. Mutation of the delta' subunit reduced the ATP-dependent beta binding activity, whereas mutation of the gamma subunits reduced the DNA binding activity of the gamma complex. The gamma complex containing the delta' mutation gave a pre-steady-state burst of ATP hydrolysis, but at a reduced rate and amplitude relative to the wild-type gamma complex. A pre-steady-state burst of ATP hydrolysis was not observed for the complex containing the gamma mutations, consistent with the reduced DNA binding activity of this complex. The differential effects of these mutations suggest that ATP binding at the gamma1 site may be coupled to conformational changes that largely modulate interactions with beta, whereas ATP binding at the gamma2 and/or gamma3 site may be coupled to conformational changes that have a major role in interactions with DNA. Additionally, these results show that the "arginine fingers" play a structural role in facilitating the formation of a conformation that has high affinity for beta and DNA.  相似文献   

10.
Mammalian DNA polymerase beta is the smallest known eukaryotic polymerase and is expressed as an active protein in Escherichia coli harboring a plasmid containing its cDNA. Since some catalytic functions of DNA polymerase beta and E. coli DNA polymerase I are similar, we wished to determine if DNA polymerase beta could substitute for DNA polymerase I in bacteria. We found that the expression of mammalian DNA polymerase beta in E. coli restored growth in a DNA polymerase I-defective bacterial mutant. Sucrose density gradient analysis revealed that DNA polymerase beta complements the replication defect in the mutant by increasing the rate of joining of Okazaki fragments. These findings demonstrate that DNA polymerase beta, believed to function in DNA repair in mammalian cells, can also function in DNA replication. Moreover, this complementation system will permit study of the in vivo function of altered species of DNA polymerase beta, an analysis currently precluded by the difficulty in isolating mutants in mammalian cells.  相似文献   

11.
12.
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.  相似文献   

13.
The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.  相似文献   

14.
The Escherichia coli chromosomal replicase, DNA polymerase III holoenzyme, is highly processive during DNA synthesis. Underlying high processivity is a ring-shaped protein, the beta clamp, that encircles DNA and slides along it, thereby tethering the enzyme to the template. The beta clamp is assembled onto DNA by the multiprotein gamma complex clamp loader that opens and closes the beta ring around DNA in an ATP-dependent manner. This study examines the DNA structure required for clamp loading action. We found that the gamma complex assembles beta onto supercoiled DNA (replicative form I), but only at very low ionic strength, where regions of unwound DNA may exist in the duplex. Consistent with this, the gamma complex does not assemble beta onto relaxed closed circular DNA even at low ionic strength. Hence, a 3'-end is not required for clamp loading, but a single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) junction can be utilized as a substrate, a result confirmed using synthetic oligonucleotides that form forked ssDNA/dsDNA junctions on M13 ssDNA. On a flush primed template, the gamma complex exhibits polarity; it acts specifically at the 3'-ssDNA/dsDNA junction to assemble beta onto the DNA. The gamma complex can assemble beta onto a primed site as short as 10 nucleotides, corresponding to the width of the beta ring. However, a protein block placed closer than 14 base pairs (bp) upstream from the primer 3' terminus prevents the clamp loading reaction, indicating that the gamma complex and its associated beta clamp interact with approximately 14-16 bp at a ssDNA/dsDNA junction during the clamp loading operation. A protein block positioned closer than 20-22 bp from the 3' terminus prevents use of the clamp by the polymerase in chain elongation, indicating that the polymerase has an even greater spatial requirement than the gamma complex on the duplex portion of the primed site for function with beta. Interestingly, DNA secondary structure elements placed near the 3' terminus impose similar steric limits on the gamma complex and polymerase action with beta. The possible biological significance of these structural constraints is discussed.  相似文献   

15.
Expression of active rat DNA polymerase beta in Escherichia coli   总被引:8,自引:0,他引:8  
A recombinant plasmid for expression of rat DNA polymerase beta was constructed in a plasmid/phage chimeric vector, pUC118, by an oligonucleotide-directed mutagenesis technique. The insert contained a 1005 bp coding sequence for the whole rat DNA polymerase beta. The recombinant plasmid was designed to use the regulatory sequence of Escherichia coli lac operon and the initiation ATG codon for beta-galactosidase as those for DNA polymerase beta. The recombinant clone, JMp beta 5, obtained by transfection of E. coli JM109 with the plasmid, produced high levels of DNA polymerase activity and a 40-kDa polypeptide that were not detected in JM109 cell extract. Inducing this recombinant E. coli with isopropyl beta-thiogalactopyranoside (IPTG) yielded amounts of 40-kDa polypeptide as high as 19.3% of total protein. Another recombinant clone, JMp beta 2-1, which was constructed by an oligonucleotide-directed mutagenesis to use the second ATG codon for the initiation codon, thus deleting the first 17 amino acid residues from the amino terminus, produced neither high DNA polymerase activity nor the 40-kDa polypeptide. The evidence suggests that this amino-terminal structure is important for stability of this enzyme in E. coli. The DNA polymerase was purified to homogeneity from the IPTG-induced JMp beta 5 cells by fewer steps than the procedure for purification of DNA polymerase beta from animal cells. The properties of this enzyme in activity, chromatographic behavior, size, antigenicity, and also lack of associated nuclease activity were indistinguishable from those of DNA polymerase beta purified from rat cells, indicating the identity of the overproduced DNA polymerase in the JMp beta 5 and the rat DNA polymerase beta.  相似文献   

16.
The Escherichia coli umuDC gene products encode DNA polymerase V, which participates in both translesion DNA synthesis (TLS) and a DNA damage checkpoint control. These two temporally distinct roles of the umuDC gene products are regulated by RecA-single-stranded DNA-facilitated self-cleavage of UmuD (which participates in the checkpoint control) to yield UmuD' (which enables TLS). In addition, even modest overexpression of the umuDC gene products leads to a cold-sensitive growth phenotype, apparently due to the inappropriate expression of the DNA damage checkpoint control activity of UmuD(2)C. We have previously reported that overexpression of the epsilon proofreading subunit of DNA polymerase III suppresses umuDC-mediated cold sensitivity, suggesting that interaction of epsilon with UmuD(2)C is important for the DNA damage checkpoint control function of the umuDC gene products. Here, we report that overexpression of the beta processivity clamp of the E. coli replicative DNA polymerase (encoded by the dnaN gene) not only exacerbates the cold sensitivity conferred by elevated levels of the umuDC gene products but, in addition, confers a severe cold-sensitive phenotype upon a strain expressing moderately elevated levels of the umuD'C gene products. Such a strain is not otherwise normally cold sensitive. To identify mutant beta proteins possibly deficient for physical interactions with the umuDC gene products, we selected for novel dnaN alleles unable to confer a cold-sensitive growth phenotype upon a umuD'C-overexpressing strain. In all, we identified 75 dnaN alleles, 62 of which either reduced the expression of beta or prematurely truncated its synthesis, while the remaining alleles defined eight unique missense mutations of dnaN. Each of the dnaN missense mutations retained at least a partial ability to function in chromosomal DNA replication in vivo. In addition, these eight dnaN alleles were also unable to exacerbate the cold sensitivity conferred by modestly elevated levels of the umuDC gene products, suggesting that the interactions between UmuD' and beta are a subset of those between UmuD and beta. Taken together, these findings suggest that interaction of beta with UmuD(2)C is important for the DNA damage checkpoint function of the umuDC gene products. Four possible models for how interactions of UmuD(2)C with the epsilon and the beta subunits of DNA polymerase III might help to regulate DNA replication in response to DNA damage are discussed.  相似文献   

17.
Crystal structures of an Escherichia coli clamp loader have provided insight into the mechanism by which this molecular machine assembles ring-shaped sliding clamps onto DNA. The contributions made to the clamp loading reaction by two subunits, chi and psi, which are not present in the crystal structures, were determined by measuring the activities of three forms of the clamp loader, gamma(3)deltadelta', gamma(3)deltadelta'psi, and gamma(3)deltadelta'psichi. The psi subunit is important for stabilizing an ATP-induced conformational state with high affinity for DNA, whereas the chi subunit does not contribute directly to clamp loading in our assays lacking single-stranded DNA-binding protein. The psi subunit also increases the affinity of the clamp loader for the clamp in assays in which ATPgammaS is substituted for ATP. Interestingly, the affinity of the gamma(3)deltadelta' complex for beta is no greater in the presence than in the absence of ATPgammaS. A role for psi in stabilizing or promoting ATP- and ATPgammaS-induced conformational changes may explain why large conformational differences were not seen in gamma(3)deltadelta' structures with and without bound ATPgammaS. The beta clamp partially compensates for the activity of psi when this subunit is not present and possibly serves as a scaffold on which the clamp loader adopts the appropriate conformation for DNA binding and clamp loading. Results from our work and others suggest that the psi subunit may introduce a temporal order to the clamp loading reaction in which clamp binding precedes DNA binding.  相似文献   

18.
We describe the mapping and sequencing of mutations within the DNA polymerase gene of herpes simplex virus type 1 which confer resistance to aphidicolin, a DNA polymerase inhibitor. The mutations occur near two regions which are highly conserved among DNA polymerases related to the herpes simplex enzyme. They also occur near other herpes simplex mutations which affect the interactions between the polymerase and deoxyribonucleoside triphosphate substrates. Consequently, we argue in favor of the idea that the aphidicolin binding site overlaps the substrate binding site and that the near-by conserved regions are functionally required for substrate binding. Our mutants also exhibit abnormal sensitivity to another DNA polymerase inhibitor, phosphonoacetic acid. This drug is thought to bind as an analogue of pyrophosphate. A second-site mutation which suppresses the hypersensitivity of one mutant to phosphonoacetic acid (but not its aphidicolin resistance) is described. This second mutation may represent a new class of mutations, which specifically affects pyrophosphate, but not substrate, binding.  相似文献   

19.
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).  相似文献   

20.
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号