首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of Asia》2019,22(1):208-214
Ectropisgrisescens Warren (Lepidoptera: Geometridae) is one of the most severe defoliating pests of tea plants. Synthetic pesticides have been widely applied to control this pest in tea plantations, but pesticide residues may decrease the quality and safety of tea products. In the present study, we hypothesized that soil treatment with the two commercial biopesticides (Shuiguxin®) based on Metarhizium anisopliae (Metchnikoff) Sorokin and Beauveria bassiana (Balsamo) could reduce the survivorship and fitness of E. grisescens. Wandering larvae of E. grisescens were allowed to pupate in soil treated with each biopesticide, and the concentrations of M. anisopliae (Shuiguxin®) and B. bassiana (Shuiguxin®) that produced the 50% mortality values (LC50) were 2.9 × 106 and 1.6 × 107 conidia/g soil, respectively. Artificial burying the pupae using soil treated with M. anisopliae (Shuiguxin®) and B. bassiana (Shuiguxin®) (1 × 108 or 1 × 109 conidia/g soil for both biopesticides) also significantly reduced emergence success of E. grisescens. In addition, choice tests showed that soil treated with the high concentration of M. anisopliae (Shuiguxin®) or B. bassiana (Shuiguxin®) had repellent effects on pupating E. grisescens. However, sublethal concentrations (LC25 and LC50) of both biopesticides did not significantly affect fecundity, fertility and longevity of post-emerged adults. Our study showed that soil treatment with the two commercial biopesticides caused direct mortality of pupating E. grisescens, but may not effectively suppress E. grisescens populations at sublethal concentrations. The realistic application of the fungal dosage in fields should be determined in future studies  相似文献   

2.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two‐way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.  相似文献   

3.
The microbial larvicides Bacillus thuringiensis var. israelensis and Bacillus sphaericus have been used extensively for mosquito control and have been found to be effective and safe to non‐target organisms cohabiting with mosquito larvae. Recently developed long lasting microbial larvicides (LLML), although evading the previous challenge of short duration of activity, increase the risk of persistence of toxins in the treated larval habitats. This study monitored the impact of LLML FourStar® and LL3 on non‐target organisms cohabiting with mosquito larvae in an operational study to control malaria vectors in western Kenya highlands. A total of 300 larval habitats were selected in three highland villages. The habitats were first monitored for 5 weeks to collect baseline data on non‐target organisms cohabiting with mosquito larvae and then randomized into two treatment arms (respective FourStar® and LL3) and one control arm. Non‐target organisms were sampled weekly for 5 months after treatment to assess the impact of LLML intervention. Before treatment, the mean density of all non‐target organisms combined in the control, LL3 and FourStar® treated habitats was 1.42, 1.39 and 1.49 individuals per habitat per sampling occasion, respectively. Following treatment, this density remained fairly unchanged for 21 weeks at which time it was 1.82, 2.11, and 2.05 for the respective control, LL3 and FourStar® treated habitats. Statistical analysis revealed that LL3 and FourStar® did not significantly alter abundance, richness or diversity of the 11 taxa studied, when comparing the intervention and control larval habitats. However, both FourStar® and LL3 significantly reduced the density of malaria vectors. In conclusion, one round of label rate application of FourStar® or LL3 in natural larval habitats did not alter richness, abundance or diversity of the monitored aquatic non‐target organisms cohabiting with mosquito larvae to an ecologically significant level.  相似文献   

4.
We evaluated biopesticides based on entomopathogenic fungi, azadirachtin and horticultural oils for the management of the chilli thrips, Scirtothrips dorsalis Hood, an economically significant invasive pest in the United States. Insecticides were applied four times at 7‐ to 10‐day intervals against established S. dorsalis infestations on shrub roses KnockOut®, Rosa x ‘Radrazz’ under simulated nursery conditions. When applied as stand‐alone treatments, Beauveria bassiana GHA (BotaniGard® ES), Metarhizium brunneum F52 (Met‐52 EC), a horticultural oil (SuffOil‐X®) and azadirachtin (Molt‐X®) at label rates provided significant control, reducing populations of S. dorsalis by 48–71% compared with control over 4–6 weeks. Similar results were observed when the biopesticides were applied in rotation with each other. A conventional standard, spinosad (Conserve® SC), was consistently the most effective treatment in these studies, reducing thrips populations by >95% overall. In another study, more effective control (87%–92%) was achieved in biopesticide rotation programmes that included spinosad, when compared with those that did not. Results also showed that these biopesticides can be tank‐mixed. However, there was no evidence that B. bassiana or M. brunneum combined with azadirachtin resulted in additive or synergistic control, as neither tank‐mix treatment improved control compared with azadirachtin alone. These findings highlight the potential use of biopesticides in rotation programmes with conventional insecticides to manage S. dorsalis on roses. Biopesticides evaluated in this study can be incorporated into an IPM programme for roses.  相似文献   

5.
Globally, the use of biopesticides is growing annually while the use of traditional pesticides is on the decline. North America uses the largest percentage of the biopesticide market share at 44%, followed by the EU and Oceania with 20% each, South and Latin American countries with 10%, about 6% in Asia and India. Although biopesticide growth is projected at 10% annually, it is highly variable among the regions constrained by factors such as regulatory hurdles, public and political attitudes, and limitations for market expansion. Microbial biopesticides have been registered in Canada for 35 years, but the number of registrations for commercial, restricted-industry and domestic uses has significantly increased over the past 10 years. The early Canadian biopesticides registered by pest control category were Bacillus thuringiensis in 1972 as the first bioinsecticide, Agrobacterium radiobacter in 1989 as the first biobacteriocide, Colletotrichum gloeosporioides f.sp. malvae in 1992 as the first bioherbicide, and Streptomyces griseoviridis in 1999 as the first biofungicide. Between 1972 and 2008, the Pest Management Regulatory Agency approved registration of 24 microbially active substances with 83 formulations. The majority of the registrations (55/83) occurred since 2000 and at the beginning of 2008 there were 10 new products (a combination of new active substances, strains, formulations, and uses) under regulatory evaluation. This paper examines the evolution of microbial biopesticides in Canada illustrating how the actions of the government, the people, and the industry have led to changes in legislation, policy, and programming that spurred momentum for new microbial pest control products in recent years and created a model system for future microbial biopesticide discovery, development, and implementation that could be adopted throughout the world.  相似文献   

6.
Natural products are considered a good choice in the biological control of mosquitoes because they are an effective way to eliminate larvae and prevent an increase in mosquito numbers, while simultaneously not polluting the environment or damaging health. This investigation was designed to study the potential toxicity of three species of algae, Caulerpa racemosa (Weber-van Bosse, 1909), Padina boryana (Thivy, 1966), and Turbinaria ornata (Turner J. Agardh, 1848), on the larvae of Aedes aegypti mosquito, the vector of dengue and Zika viruses. Among the studied species, Caulerpa racemosa showed the greatest effectiveness in eradicating A. aegypti larvae with an LC50 = 43.5 ppm, followed by Padina boryana with an LC50 = 51.93 ppm. Both species proved to be excellent candidates as a source of larvicidal agents and could be used commercially in mosquito control programs as eco-friendly biopesticides. The combined activity of different mixtures against mosquito larvae was expressed as the coeffective factor (C.F.). C.F. values showed that the joint activity of insect growth regulator Dudim in combination with Caulerpa racemosa and Padina boryana extracts produced degrees of potentiation effects and degrees of additive effects were obtained with Dudim in combination with Turbinaria ornata extract.  相似文献   

7.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

8.

Background  

The aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt) based biopesticides in mice. Endpoints were lung inflammation evaluated by presence of inflammatory cells in bronchoalveolar lavage fluid (BALF), clearance of bacteria from the lung lumen and histological alterations of the lungs. Hazard identifications of the biopesticides were carried out using intratracheal (i.t.) instillation, followed by an inhalation study. The two commercial biopesticides used were based on the Bt. subspecies kurstaki and israelensis, respectively. Groups of BALB/c mice were i.t instilled with one bolus (3.5 × 105 or 3.4 × 106 colony forming units (CFU) per mouse) of either biopesticide. Control mice were instilled with sterile water. BALFs were collected and the inflammatory cells were counted and differentiated. The BALFs were also subjected to CFU counts.  相似文献   

9.
Bacillus thuringiensis (Bt) has been used as a biopesticide in agriculture, forestry and mosquito control because of its advantages of specific toxicity against target insects, lack of polluting residues and safety to non-target organisms. The insecticidal properties of this bacterium are due to insecticidal proteins produced during sporulation. Despite these ecological benefits, the use of Bt biopesticides has lagged behind the synthetic chemicals. Genetic improvement of Bt natural strains, in particular Bt recombination, offers a promising means of improving efficacy and cost-effectiveness of Bt-based bioinsecticide products to develop new biotechnological applications.  相似文献   

10.
Spores from axenic cultures of Smittium spp., isolated from various geographical locations and from different dipteran hosts (mosquito, black fly, and chironomid larvae), were fed to mosquito larvae (Aedes aegypti). We were able to demonstrate some host specificity at the insect family level, but no significant differences in infectivity by isolates from different geographical areas. Spore germination and thallus attachment were observed in the host hindgut within 1.5 hr post spore ingestion. Preliminary studies indicate that S. culisetae has little effect on A. aegypti larvae when they are reared under conditions that promote pupation within 5–6 days. However, ingestion of large numbers of spores by 1st instar larvae growing under suboptimal nutritional conditions may produce fungal growth detrimental to larvae.  相似文献   

11.
Drosophila suzukii Matsumura is a significant pest of soft‐skinned fruit. Larvae of D. suzukii develop within the fruit making it unmarketable as fresh berries and increasing the risk of rejection by processors. We evaluated selected biopesticides for control of D. suzukii in fall red raspberries, Rubus idaeus L. The trial results highlight a small number of biopesticides with the potential to reduce infestation of Drosophila larvae in raspberries. In addition to the standard biopesticide spinosad, we found that sabadilla alkaloids and Chromobacterium subtsugae both reduced the number of Drosophila larvae in raspberry fruit. Treatments that included corn syrup as a feeding stimulant showed no significant difference in their infestation levels compared to treatments without the syrup. In the final week of the 5‐week trial, treatments with rotations of either spinosad/C. subtsugae or spinosad/sabadilla alkaloids had a 67% and 57% reduction in infestation when compared to untreated raspberries. Treatments of spinosad alone on a 7 day rotation and C. subtsugae alone on a 3–5 day rotation both had a 62% and 61% reduction in larval infestation when compared to untreated raspberries. Third instar larvae, the largest and most damaging, were significantly reduced in plots treated with spinosad only, a rotation of spinosad/sabadilla alkaloids and the rotation of spinosad/C. subtsugae with corn syrup added when compared to untreated plots. This suggests that either of these biopesticides could be used as effective rotation partners along with spinosad for control of D. suzukii. Our results highlight that biopesticides can provide significant reduction in this devastating pest when used alone or in combination, providing options to support resistance management.  相似文献   

12.
13.
Maize is a major staple food for over 300 million people in sub‐Saharan Africa. Sustainable productivity of this primary crop has been recently threatened by Fall armyworm (FAW), Spodoptera frugiperda invasion. Due to lack of environmentally safe management strategies, immediate responses by growers and governments to tackle FAW are based on rampant use of pesticides. Looking for efficient biopesticides, twenty entomopathogenic fungal isolates (14 Metarhizium anisopliae and 6 Beauveria bassiana) were screened for their efficacy against eggs and second instar larvae of FAW. A single discriminating concentration of 1 × 108 conidia ml?1 and four replicates per treatment were used in all experiments. Isolates were assessed for their ability to cause mortality of FAW second instar larvae, eggs and the neonate larvae that emerged from treated eggs. Among the isolates tested, only B. bassiana ICIPE 676 caused moderate mortality of 30% to second instar larvae. Metarhizium anisopliae ICIPE 78, ICIPE 40 and ICIPE 20 caused egg mortalities of 87.0%, 83.0% and 79.5%, respectively, and M. anisopliae ICIPE 41 and ICIPE 7 outperformed all the others by causing 96.5% and 93.7% mortality to the neonate larvae, respectively. The cumulated mortality of eggs and neonates was highest with M. anisopliae ICIPE 41 (97.5%), followed by M. anisopliae ICIPE 7, 655, 40, 20 and 78 with total mortality of 96.0%, 95.0%, 93.5%, 93.0% and 92.0%, respectively. These isolates with high cumulated mortality (≥92%), especially ICIPE 78 and 7, which are already commercialized for spider mites and ticks control respectively, would be good candidates for development as biopesticides for management of FAW in Africa if further evidence of their efficacy is obtained in the field.  相似文献   

14.
《Journal of Asia》2007,10(1):69-74
The objective of this investigation was to study the use of pest repellent plant (PRP) species and biopesticides for sustainable pest management in Chinesekale(Brassica oleracea L. var. alboglabra Bailey). Ten selected treatments composed of three PRP species namely citronella grass - (CG) [Cymbopogon nardus L. (Rendle)], sweet basil - (SwB) (Ocimum basilicum L.) and sacred basil - (SaB) (Ocimum sanctum L.)] were intercropped with Chinese kale, integrated with two commonly used biopesticides, viz. Bacillus thuringiensis (Bt) and neem extract (Azadirachta indica) and a control were tested in a randomized complete block design (RCBD) with 3 replicates. The insect pest species infested in Chinese kale and their populations, % pest damage, fresh weight and quality of yield were investigated. The results showed that diamondback moth - (DBM) [Plutella xylostella (Linnaeus)] density was lowest in CG alone, CG+SaB, SwB+biopesticides and SaB+biopesticides, relatively low in SwB alone, CG+SaB+SwB, and CG+biopesticides, and moderate in biopesticides and sacred basil alone, and highest in the control. The densities of common cutworm - (CCW) [Spodoptera litura (Fabricius)], cabbage webworm - (CWW) [Hellula undalis (Fabricius)] and flea beetle - (FBT) (Phyllotreta sinuata Steph.) were not significantly different among treatments. The overall pest damage was lowest in CG+biopesticides treated plots followed by SwB+ biopesticides, SaB+biopesticides and biopesticides alone, and CG+biopesticides gave the best quality of yield of Chinese kale, and hence such combinations could be integrated for managing crucial insect pests, i.e. DBM and to minimize/avoid the use of highly toxic synthetic pesticides in Chinese kale.  相似文献   

15.
Aquatain® mosquito formulation (AMF) is a silicone-based monomolecular film, which has recently been approved for use in the European Union. The physical mode of action based on lowering water surface tension prevents mosquito larvae/pupae respiration. Additionally, AMF disables gravid females from landing on the water surface and obstructs the natural oviposition process. Due to multistage effects on mosquitoes, AMF could be a product of choice for defined water body and container breeders such as Culex pipiens L. complex, principal vector of West Nile virus in Europe, and the invasive Aedes albopictus (Skuse) (both Diptera: Culicidae), vector of dengue and chikungunya viruses. The primary objectives of this study were to evaluate the efficacy of AMF, to determine the susceptibility of the immature forms of C. pipiens and A. albopictus, and the persistence/longevity of the product to suppress the eclosion of adults. AMF achieved high mortality rates of juvenile A. albopictus and C. pipiens under laboratory conditions. However, in the field C. pipiens larvae showed higher susceptibility to AMF than A. albopictus. Pupae of the two mosquito species were highly susceptible to the presence of AMF. When C. pipiens juveniles were exposed to AMF in the wild, effects lasted for 21 days in densely covered water bodies and 56 days in water recipients with less vegetation. In both breeding sites, natural habitat and artificial water recipient, the two mosquito species with high impact on public health in Europe could successfully be suppressed by application of AMF (1 ml m−2).  相似文献   

16.
The extensive use of nondegradable chemical pesticides for pest management has developed serious environmental hazards. This has necessitated the urgent need to switch over to an alternative mode of biopesticide development for mass agriculture and field crop protection. Azadirachta indica A. Juss (commonly known as neem) houses a plethora of bioactive secondary metabolites with azadirachtin being the most active constituent explored in the sector of ecofriendly and biodegradable biopesticides characterized by low toxicity toward nontarget organisms. It has been reported that the highest content of azadirachtin and related limonoids is present in the seeds, available once in a year. Moreover, the inconsistent content and purity of the metabolites in whole plant makes it imperative to tap the potential of in vitro plant tissue culture applications, which would allow for several controlled manipulations for better yield and productivities. This review gives a summarized literature of the applied research and achievements in plant cell/hairy cultures of A. indica A. Juss mainly in context with the biopesticide azadirachtin and applications thereof.  相似文献   

17.
Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top‐down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top‐down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density‐dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial‐based control methods.  相似文献   

18.
The diamondback moth (DBM), Plutella xylostella (L.), is a major pest of brassica crops worldwide. Control of this pest is difficult because it rapidly develops resistance to synthetic and biological insecticides and because of the effects of insecticides on its natural enemies. Podisus nigrispinus (Dallas) is a predator that feeds on its prey, as well as on the host plants of its prey, and is an important biological control agent of DBMs. The aim of this study was to determine the susceptibility of P. xylostella larvae to two bioinsecticides: the HD1 strain of Bacillus thuringiensis (B. thuringiensis var. kurstaki) and the commercial product Agree® (B. thuringiensis var. aizawai CG 91). In addition, the impact of these bioinsecticides on the P. nigrispinus consumption of DBM larvae and phytophagy was evaluated. Both the HD1 strain and Agree® caused 100% mortality in P. xylostella larvae. P. nigrispinus nymphs fed only with kale leaves (Brassica oleracea var. acephala) sprayed with water, the HD1 strain, or Agree® did not complete their nymphal development. When prey was also available, P. nigiripinus fed on kale leaves to obtain water. Both nymphs and adults of P. nigrispinus consumed greater numbers of DBM larvae, and fed less on kale leaves, when sprayed with the HD1 strain or Agree®. These results suggest a positive interaction of B. thuringiensis‐based products and the predator P. nigrispinus in the control of P. xylostella larvae.  相似文献   

19.
Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density‐dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple‐prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey.  相似文献   

20.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号