首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To demonstrate the importance of genetic data for multispecies conservation approaches, we examined the distribution of genetic variation across the range of the mountain whitefish (Prosopium williamsoni) at microsatellite and allozyme loci. The mountain whitefish is a common species that is particularly well suited for accurately revealing historical patterns of genetic structure and differs markedly from previously studied species in habitat requirements and life history characteristics. As such, comparing the population genetic structure of other native fishes to similar data from mountain whitefish could inform management and conservation strategies. Genetic variation for mountain whitefish was hierarchically distributed for both allozymes and microsatellites. We found evidence for a total of five major genetically differentiated assemblages and we observed subdivision among populations within assemblages that generally corresponded to major river basins. We observed little genetic differentiation within major river basins. Geographic patterns of genetic differentiation for mountain whitefish were concordant with other native species in several circumstances, providing information for the designation of conservation units that reflect concordant genetic differentiation of multiple species. Differences in genetic patterns between mountain whitefish and other native fishes reflect either differences in evolutionary histories of the species considered or differences in aspects of their ecology and life history. In addition, mountain whitefish populations appear to exchange genes over a much larger geographic scale than co-occurring salmonids and are likely to be affected differently by disturbances such as habitat fragmentation.  相似文献   

2.
Recent technological developments have facilitated an increased focus on identifying genomic regions underlying adaptive trait variation in natural populations, and it has been advocated that this information should be important for designating population units for conservation. In marine fishes, phenotypic studies have suggested adaptation through divergence of life-history traits among natural populations, but the distribution of adaptive genetic variation in these species is still relatively poorly known. In this study, we extract information about the geographical distribution of genetic variation for 33 single nucleotide polymorphisms (SNPs) associated with life-history trait candidate genes, and compare this to variation in 70 putatively neutral SNPs in Atlantic cod (Gadus morhua). We analyse samples covering the major population complexes in the eastern Atlantic and find strong evidence for non-neutral levels and patterns of population structuring for several of the candidate gene-associated markers, including two SNPs in the growth hormone 1 gene. Thus, this study aligns with findings from phenotypic studies, providing molecular data strongly suggesting that these or closely linked genes are under selection in natural populations of Atlantic cod. Furthermore, we find that patterns of variation in outlier markers do not align with those observed at selectively neutral markers, and that outlier markers identify conservation units on finer geographical scales than those revealed when analysing only neutral markers. Accordingly, results also suggest that information about adaptive genetic variation will be useful for targeted conservation and management in this and other marine species.  相似文献   

3.
A decreasing population size is often causing species extinction, however, relict species persisting in small-sized populations counter this. We analysed spatial genetic variation and past changes in population size at the maternally-inherited mitochondrial DNA level to clarify the origin of all recently known isolated populations of Pholidoptera frivaldskyi occurring in the range of Carpathian Mountains. Along with that we analysed also morphological variation as some phenotypic traits can retain useful information on population genetic structure. We found a relatively low genetic diversity within isolated populations as 778 bp COI gene sequences revealed only 13 unique haplotypes (n = 173 individuals from 10 populations). The spatial analysis of molecular variance identified three geographically homogenous genetic clusters (one in Slovakia and two in Romania) with a high level of differentiation among them, suggesting restricted gene flow, whilst Bayesian skyline simulation reconstructed a negative demographic change through evolutionary time. Inferred genetic pattern clearly coincides with differences in males’ colour phenotype as the extent of pigmentation on the lateral pronotum varied significantly among genetic lineages. We suggest that geographical variation in the species populations has relict-like character and their isolated occurrence is not a result of recent introduction events. Identification of ‘evolutionary units’ may help in the conservation and management of this rare insect species.  相似文献   

4.
C F Baer 《Genetics》1999,152(2):653-659
Variation among loci in the distribution of allele frequencies among subpopulations is well known; how to tell when the variation exceeds that expected when all loci are subject to uniform evolutionary processes is not well known. If locus-specific effects are important, the ability to detect those effects should vary with the level of gene flow. Populations with low gene flow should exhibit greater variation among loci in Fst than populations with high gene flow, because gene flow acts to homogenize allele frequencies among subpopulations. Here I use Lewontin and Krakauer's k statistic to describe the variance among allozyme loci in 102 published data sets from fishes. As originally proposed, k > 2 was considered evidence that the variation in Fst among loci is greater than expected from neutral evolution. Although that interpretation is invalid, large differences in k in different populations suggest that locus-specific forces may be important in shaping genetic diversity. In these data, k is not greater for populations with expected low levels of gene flow than for populations with expected high levels of gene flow. There is thus no evidence that locus-specific forces are of general importance in shaping the distribution of allele frequencies at enzyme loci among populations of fishes.  相似文献   

5.
In recent years, variation in gene expression has been recognized as an important component of environmental adaptation in multiple model species, including a few fish species. There is, however, still little known about the genetic basis of adaptation in gene expression resulting from variation in the aquatic environment (e.g. temperature, salinity and oxygen) and the physiological effect and costs of such differences in gene expression. This review presents and discusses progress and pitfalls of applying gene expression analyses to fishes and suggests simple frameworks to get started with gene expression analysis. It is emphasized that well-planned gene expression studies can serve as an important tool for the identification of selection in local populations of fishes, even for non-traditional model species where limited genomic information is available. Recent studies focusing on gene expression variation among natural fish populations are reviewed, highlighting the latest applications that combine genetic evidence from neutral markers and gene expression data.  相似文献   

6.
明确珍稀濒危小种群阜康阿魏(Ferula fukanensis)的遗传多样性和遗传结构,是对其制定有效的保护和管理策略的基础和前提。本研究基于10对多态性好且可以稳定扩增的SSR引物对来源于3个居群87个珍稀濒危植物阜康阿魏的遗传多样性和遗传结构进行分析。结果显示:小种群的阜康阿魏具有相对较高的遗传多样性,居群间Nei’s基因多样性指数(hS)为0.514,总的Nei’s基因多样性指数(hT)为0.516,观测杂合度(Ho)为0.881,期望杂合度(He)为0.512,香农信息指数(I)为0.836,多态位点百分率(PPB)为100%,遗传分化程度较低(Fst=0.007),95.9%的变异发生在居群内,遗传距离与地理距离无显著相关性,66.7%的居群遭遇了遗传瓶颈。结果表明,阜康阿魏遗传变异丰富,有较高的进化潜力。结合该种野外种群现状,建议建立保护区,开展就地保护,并加强引种和人工繁育等迁地保护措施,辅助阜康阿魏保育。本研究可为阜康阿魏植物资源保护提供理...  相似文献   

7.
Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, Pinus torreyana Parry, is one of the rarest pines in the world, restricted to one mainland and one island population. Morphological differentiation between island and mainland populations suggests adaptation to local environments may have contributed to trait variation. The distribution of phenotypic variances within the common garden suggests distinct population‐specific growth trajectories underlay genetic differences, with the island population exhibiting substantially reduced genetic variance for growth relative to the mainland population. Furthermore, F1 hybrids, representing a cross between mainland and island trees, exhibit increased height accumulation and fecundity relative to mainland and island parents. This may indicate genetic rescue via intraspecific hybridization could provide the necessary genetic variation to persist in environments modified as a result of climate change. Long‐term common garden experiments, such as these, provide invaluable resources to assess the distribution of genetic variance that may inform conservation strategies to preserve evolutionary potential of rare species, including genetic rescue.  相似文献   

8.
We screened genetic variation in a polytypicorganism, whose populations are oftendistributed into numerous isolated habitats,and integrated the results into a critique ofdefining ``units' of conservation for organismswith highly fragmented populations. Sixteenpopulations of brown trout Salmo truttaL. across 8 Portuguese river basins werescreened for variation at 5 loci (mtDNA andallozymes). Population history based on mtDNArevealed a mosaic pattern driven by pastfragmentation and restricted gene flow withlittle correspondence to major river drainagesor recently proposed OCUs on the IberianPeninsula. Such patterns of variation offer achallenge to conservation strategies that basethemselves on defining units of conservation,particularly if such units intend to reflect ahierarchical evolutionary structure. Wesuggest that geographically mosaic patterns ofevolutionary lineages, as well as adaptivelysignificant traits are common characteristicsof many freshwater organisms. Thus,large-scale units, even if diagnosed by mtDNAclades, are often too heterogeneous to considera ``unit' of conservation. Alternatively, abottom-up perspective that prioritizespopulations or metapopulations is both morepractical and more effective in recognizing andpreserving evolutionary diversity.  相似文献   

9.

Background  

Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs) for evidence of selection in local populations of Atlantic cod (Gadus morhua L.) across the species distribution.  相似文献   

10.
J. Geist    M. Kolahsa    B. Gum    R. Kuehn 《Journal of fish biology》2009,75(5):1063-1078
European huchen Hucho hucho (L.) is an endangered flagship species, which is endemic to the Danube drainage in central Europe. To date, no genetic information has been available as a basis for ongoing conservation and breeding programmes for the species. It is suspected that most populations in the wild share one common gene pool and that they exclusively depend on stocking with hatchery fish. In this study, highly variable microsatellite markers were established and the genetic diversity and differentiation from four important hatchery-reared stocks were compared with that of eight H. hucho populations sampled in the wild. Overall, eight genetic clusters with a moderate to very great degree of genetic differentiation and high assignment rates were identified. Each cluster contained individuals from two to 10 different populations and 9–100% of specimens from hatchery stocks. It is proposed that genetic cluster-based management in the conservation of European huchen is advantageous compared with the consideration of single local populations. A combined approach of maintaining the evolutionary potential of wild populations and genetically variable hatchery stocks can maximize the conservation of the species' evolutionary potential.  相似文献   

11.
云南穗花杉的遗传多样性研究   总被引:6,自引:0,他引:6  
采用随机扩增多态DNA(RAPD)方法对云南穗花杉(Amentotaxus yunnanensis)4个居群和台湾穗花杉似(Amentotaxus for9rmosana)1个居群共104个个体进行了遗传多样性分析。9个随机引物共扩增出清晰谱带143条。云南穗花杉在物种水平上遗传多样性较高(多态位点百分率P为79.0%,基因多样性指数He为0.2718),但云南穗花杉和台湾穗花杉居群内遗传多样性均较低(P为18.0%、6.9%;He为0.0688、0.0198)。云南穗花杉居群间遗传分化强烈(AMOVA,GST和Shannon多样性指数分别为0.7611,0.7503和0.7526)。据推测,第四纪冰川引起的瓶颈效应,小规模居群引起的遗传漂变及幼苗成活率低等因素都加剧了居群间的遗传分化。建议对所研究的云南穗花杉全部居群予以保护,特别是对云南西畴和贵州兴义市七舍两个具有相对较高遗传多样性的居群应该优先建立就地保护点,以达到最大限度保存云南穗花杉遗传多样性的目的。  相似文献   

12.
Saline inland waters are globally threatened habitats harbouring many specialised endemic species, which often have restricted geographic ranges, and occur as highly isolated populations. We studied the genetic variation and phylogeography of Ochthebius glaber Montes and Soler, a rare and endangered water beetle endemic to hypersaline streams in the South and Southeast of the Iberian Peninsula. We used a 633 bp fragment of cytochrome oxidase subunit 1 gene to determine the genetic diversity and phylogeographic structure within this species, and interpret this in the light of the speciesȁ9 conservation requirements. Thirteen populations were sampled across the speciesȁ9 geographic range, and genetic diversity found to be very high, with 37 haplotypes across the 71 specimens examined (p-distance 0.2–7.3%, average 3.1±0.4). Phylogeographic analyses revealed a surprisingly high degree of geographical structure, detectable among populations separated by relatively short geographical distances, with three main groups of haplotypes which have apparently been isolated for significant periods of time. Past fragmentation and contiguous range expansion events were inferred as the main causes of the detected geographical associations of haplotypes. The establishment of independent evolutionary lineages as conservation units is particularly important for species inhabiting saline habitats such as O. glaber, which is endangered by habitat loss across most of its distribution. However, given the natural instability of hypersaline environments, the conservation of a network of populations and potential habitats would be necessary to enable the preservation of the process generating and maintaining the diversity of the species.  相似文献   

13.
Abstract: In the Netherlands indigenous Quercus robur L. populations are rare and have been maintained as patches in ancient woodland. For adequate conservation of these populations, information about genetic variation and population structure is necessary. In order to assess the genetic variation and structure of these populations, microsatellite polymorphisms were studied in two autochthonous populations. These two populations differed slightly for their gene diversity, which was as high as was observed for Q. robur populations in France and Germany. For reforestation purposes there is an interest in the genetic variation of a half‐sib family harvested from one tree. The gene diversity of the two studied half‐sib families ‐ obtained from a forest and an urban area ‐ was similar, but relatively low. This indicates that, for reforestation purposes, seeds should be harvested from many different trees in order to obtain a population with a genetic variation as high as was observed for an autochthonous population.  相似文献   

14.

Background

Tetraena mongolica (Zygophyllaceae), an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation.

Results

Sequence variation and spatial apportionment of the atp B- rbc L noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations.

Conclusions

Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.  相似文献   

15.
Aim Japanese red maple (Acer pycnanthum K. Koch) is an endangered species which grows in discrete wetland ecosystems within a limited geographical range. It is an important relic of geologic time, an endemic of unique wetland ecosystems and an indicator of hotspots of plant species diversity. However, information on its genetic characteristics across its range is lacking. Our aim was to determine the genetic structure and diversity of the species and make recommendations for conservation. Location Wetlands in central Honshu Island, Japan. Methods We collected leaf samples from 400 individuals of A. pycnanthum in 30 populations, extracted total DNA from each and sequenced three non‐coding regions of chloroplast DNA. Results We identified nine haplotypes. High haplotype diversity (0.81) and the occurrence of rare haplotypes in eight distant populations suggest that wetlands provided multiple, adequate‐size refuges during the Last Glacial Maximum. We found only one to four haplotypes within populations. The high degree of differentiation (GST = 0.83) implies that gene flow by seeds among populations is restricted. Eight populations demonstrated a positive contribution to the total genetic diversity owing to occurrence of rare and private haplotypes. Such populations are concentrated in the south‐western part of the species distribution. According to the spatial autocorrelation analysis, there were significant spatial clusters of populations, which were characterized by similar haplotype composition. Using the haplotype distribution, samova and barrier detected nearly identical genetic boundaries. Main conclusion In spite of the species’ limited geographical range, we identified a relatively high number of haplotypes and a clear geographical structure. We propose six management units, which can be used for future conservation activities, such as introduction of new individuals for on‐site conservation projects and seed collection for ex situ conservation.  相似文献   

16.
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribution of genetic variation within and among parasite populations. The hypothesis states that parasites cycling only in freshwater hosts (autogenic life cycle) will be more limited in their dispersal ability among aquatic habitats than parasites cycling through freshwater and terrestrial hosts (allogenic life cycle). By extending this hypothesis to the level of intraspecific genetic variation, we examined the effects of host dispersal on parasite gene flow. Our a priori prediction was that for a given geographic range, autogenic parasites would have lower gene flow among subpopulations. We compared intraspecific mitochondrial DNA variation for three described species of trematodes that infect salmonid fishes. As predicted, autogenic species had much more highly structured populations and much lower gene flow among subpopulations than an allogenic species sampled from the same locations. In addition, a cryptic species was identified for one of the autogenic trematodes. These results show how variation in life cycles can shape parasite evolution by predisposing them to vastly different genetic structures. Thus, we propose that knowledge of parasite life cycles will help predict important evolutionary processes such as speciation, coevolution, and the spread of drug resistance.  相似文献   

17.
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human‐mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.  相似文献   

18.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

19.
重要物种优先保护种群的确定   总被引:10,自引:0,他引:10  
由于同一物种不同种群的重要性不同、用于物种保护的资金有限以及保护与发展经济之间的矛盾,因此对于重要物种(尤其是濒危种类以及农作物和驯化动物的野生近缘种)需要确定保护什么以及保护哪儿。目前确定优先保护种群的方法主要有3类,分别为基于遗传变异、基于遗传差异性和基于遗传贡献率的方法。基于遗传变异的方法主要是根据遗传变异程度(尤其是等位基因多样性)来确定优先保护的顺序,但忽略了种群之间的遗传差异性,这容易使得存在于遗传变异程度较低的种群中的特有等位基因得不到有效保护。而基于遗传差异性的方法(如确定进化显著单元)则是从遗传分化程度的角度考虑优先性,即独特性越强的种群越具有保护价值。基于遗传贡献率的方法由于综合考虑了遗传多样性和差异性,最适合于确定哪些种群需要优先保护。我国开展此类研究十分必要。  相似文献   

20.
The increasing fragmentation of natural habitats may strongly affect patterns of dispersal and gene flow among populations, and thus alter evolutionary dynamics. We examined genetic variation at twelve microsatellite loci in the Agile frog (Rana dalmatina) from 22 breeding ponds in the Iberian Peninsula, the southwest limit of its range, where populations of this species are severely fragmented and are of conservation concern. We investigated genetic diversity, structure and gene flow within and among populations. Diversity as observed heterozygosities ranged from 0.257 to 0.586. The mean number of alleles was 3.6. Just one population showed a significant F IS value. Four populations show evidence of recent bottlenecks. Strong pattern of structure was observed due to isolation by distance and to landscape structure. The average degree of genetic differentiation among populations was F ST = 0.185. Three operational conservation units with metapopulation structure were identified. Additionally, there are some other isolated populations. The results reinforce the view that amphibian populations are highly structured even in small geographic areas. The knowledge of genetic structure pattern and gene flow is fundamental information for developing programmes for the preservation of R. dalmatina at the limits of its geographic distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号