首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in 'Birch-like' reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., -1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

4.
Matthias Boll 《BBA》2005,1707(1):34-50
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in ‘Birch-like’ reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., −1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

5.
In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring cleavage. Recently, evidence was obtained that obligately anaerobic bacteria that use aromatic growth substrates do not contain an ATP-dependent benzoyl-CoA reductase. In these bacteria, the reactions involved in dearomatization and cleavage of the aromatic ring have not been shown, so far. In this work, a characteristic enzymatic step of the benzoyl-CoA pathway in obligate anaerobes was demonstrated and characterized. Dienoyl-CoA hydratase activities were determined in extracts of Geobacter metallireducens (iron reducing), Syntrophus aciditrophicus (fermenting), and Desulfococcus multivorans (sulfate reducing) cells grown with benzoate. The benzoate-induced genes putatively coding for the dienoyl-CoA hydratases in the benzoate degraders G. metallireducens and S. aciditrophicus were heterologously expressed and characterized. Both gene products specifically catalyzed the reversible hydration of dienoyl-CoA to 6-hydroxycyclohexenoyl-CoA (Km, 80 and 35 microM; Vmax, 350 and 550 micromol min(-1) mg(-1), respectively). Neither enzyme had significant activity with cyclohex-1-ene-1-carbonyl-CoA or crotonyl-CoA. The results suggest that benzoyl-CoA degradation proceeds via dienoyl-CoA and 6-hydroxycyclohexanoyl-CoA in strictly anaerobic bacteria. The steps involved in dienoyl-CoA metabolism appear identical in all nonphotosynthetic anaerobic bacteria, although totally different benzene ring-dearomatizing enzymes are present in facultative and obligate anaerobes.  相似文献   

6.
Boll M  Fuchs G 《Biological chemistry》2005,386(10):989-997
Aerobic bacteria use molecular oxygen as a common co-substrate for key enzymes of aromatic metabolism. In contrast, in anaerobes all oxygen-dependent reactions are replaced by a set of alternative enzymatic processes. The anaerobic degradation of phenol to a non-aromatic product involves enzymatic processes that are uniquely found in the aromatic metabolism of anaerobic bacteria: (i) ATP-dependent phenol carboxylation to 4-hydroxybenzoate via a phenylphosphate intermediate (biological Kolbe-Schmitt carboxylation); (ii) reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA; and (iii) ATP-dependent reductive dearomatization of the key intermediate benzoyl-CoA in a 'Birch-like' reduction mechanism. This review summarizes the results of recent mechanistic studies of the enzymes involved in these three key reactions.  相似文献   

7.
Benzoyl-coenzyme A (CoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds and catalyse the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA. Class I BCRs are ATP-dependent FeS enzymes, whereas class II BCRs are supposed to be ATP-independent and contain W, FeS clusters, and most probably selenocysteine. The active site components of a putative eight subunit class II BCR, BamBCDEFGHI, were recently characterized in Geobacter metallireducens. In this organism bamB was identified as structural gene for the W-containing active site subunit; bamF was predicted to code for a selenocysteine containing electron transfer subunit. In this work the occurrence and expression of BCRs in a number of anaerobic, aromatic compound degrading model microorganisms was investigated with a focus on the BamB and BamF components. Benzoate-induced class II BCR in vitro activities were determined in the soluble protein fraction in all obligately anaerobic bacteria tested. Where applicable, the results were in agreement with Western blot analysis using BamB targeting antibodies. By establishing a specific bamB targeting PCR assay, bamB homologues were identified in all tested obligately anaerobic bacteria with the capacity to degrade aromatic compounds; a number of bamB sequences from Gram-negative/positive sulfate-reducing bacteria were newly sequenced. In several organisms at least two bamB paralogues per genome were identified; however, in nearly all cases only one of them was transcribed during growth on an aromatic substrate. These benzoate-induced bamB genes are proposed to code for the active site subunit of class II BCRs; the major part of them group into a phylogenetic subcluster within the bamB homologues. Results from in silico analysis suggested that all class II BCRs contain selenocysteine in the BamF, and in many cases also in the BamE subunit. The results obtained indicate that the distribution of the two classes of BCRs in anaerobic bacteria appears to be strictly ruled by the available free energy from the oxidation of the aromatic carbon source rather than by phylogenetic relationships.  相似文献   

8.
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well‐studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal‐ and/or flavin‐containing cofactors, of which many use unprecedented radical mechanisms for C–H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram‐positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl‐coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.  相似文献   

9.
Class I benzoyl-CoA reductases (BCRs) are oxygen-sensitive key enzymes in the degradation of monocyclic aromatic compounds in anaerobic prokaryotes. They catalyze the ATP-dependent reductive dearomatization of their substrate to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA). An aromatizing 1,5-dienoyl-CoA oxidase (DCO) activity has been proposed to protect BCRs from oxidative damage, however, the gene and its product involved have not been identified, yet. Here, we heterologously produced a DCO from the hyperthermophilic euryarchaeon Ferroglobus placidus that coupled the oxidation of two 1,5-dienoyl-CoA to benzoyl-CoA to the reduction of O2 to water at 80°C. DCO showed similarities to members of the old yellow enzyme family and contained FMN, FAD and an FeS cluster as cofactors. The O2-dependent activation of inactive, reduced DCO is assigned to a redox thiol switch at Eo′ = −3 mV. We propose a catalytic cycle in which the active site FMN/disulfide redox centers are reduced by two 1,5-dienoyl-CoA (reductive half-cycle), followed by two consecutive two-electron transfer steps to molecular oxygen via peroxy- and hydroxyflavin intermediates yielding water (oxidative half-cycle). This work identified the enzyme involved in a unique oxygen detoxification process for an oxygen-sensitive catabolic enzyme.  相似文献   

10.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

11.
Organohalides are environmentally relevant compounds that can be degraded by aerobic and anaerobic microorganisms. The denitrifying Thauera chlorobenzoica is capable of degrading halobenzoates as sole carbon and energy source under anaerobic conditions. LC‐MS/MS‐based coenzyme A (CoA) thioester analysis revealed that 3‐chloro‐ or 3‐bromobenzoate were preferentially metabolized via non‐halogenated CoA‐ester intermediates of the benzoyl‐CoA degradation pathway. In contrast, 3‐fluorobenzoate, which does not support growth, was converted to dearomatized fluorinated CoA ester dead‐end products. Extracts from cells grown on 3‐chloro‐/3‐bromobenzoate catalysed the Ti(III)‐citrate‐ and ATP‐dependent reductive dehalogenation of 3‐chloro/3‐bromobenzoyl‐CoA to benzoyl‐CoA, whereas 3‐fluorobenzoyl‐CoA was converted to a fluorinated cyclic dienoyl‐CoA compound. The reductive dehalogenation reactions were identified as previously unknown activities of ATP‐dependent class I benzoyl‐CoA reductases (BCR) present in all facultatively anaerobic, aromatic compound degrading bacteria. A two‐step dearomatization/H‐halide elimination mechanism is proposed. A halobenzoate‐specific carboxylic acid CoA ligase was characterized in T. chlorobenzoica; however, no such enzyme is present in Thauera aromatica, which cannot grow on halobenzoates. In conclusion, it appears that the presence of a halobenzoate‐specific carboxylic acid CoA ligase rather than a specific reductive dehalogenase governs whether an aromatic compound degrading anaerobe is capable of metabolizing halobenzoates.  相似文献   

12.
C Lochmeyer  J Koch    G Fuchs 《Journal of bacteriology》1992,174(11):3621-3628
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.  相似文献   

13.
In this study I consider the incomplete biodegradation of aromatic compounds during the wastewater cycle between aerobic or anaerobic zones in biological nutrient removal processes, including aerobic biodegradation of compounds (such as cyclohex-1-ene-1-carboxyl-CoA) produced during the incomplete anaerobic biodegradation of aromatic compounds, and anaerobic biodegradation of compounds (such as catechol, protocatechuate, and gentisic acid) produced during the incomplete aerobic biodegradation of aromatic compounds. Anaerobic degradation of the aerobic central intermediates that result from the incomplete aerobic degradation of aromatic compounds usually leads to benzoyl-CoA. On the other hand, aerobic degradation of the anaerobic central intermediates that result from the incomplete anaerobic degradation of aromatic compounds usually leads to protocatechuate.  相似文献   

14.
Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°′ = −622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.  相似文献   

15.
The anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) was studied in a denitrifying bacterium. Cells grown with 2-hydroxybenzoate were simultaneously adapted to degrade benzoate. Extract of these cells formed benzoate or benzoyl-CoA when incubated under reducing conditions with salicylate, MgATP, and coenzyme A, suggesting a degradation of 2-hydroxybenzoate via benzoate or benzoyl-CoA. This suggestion was supported by enzyme activity measurements. In extracts of 2-hydroxybenzoate-grown cells, the following enzyme activities were detected: two CoA ligases, one specific for 2-hydroxybenzoate, the other for benzoate, and two different enzyme activities catalyzing the reductive transformation of 2-hydroxybenzoyl-CoA. These findings suggest a degradation of salicylic acid by two new enzymes, 2-hydroxybenzoate-CoA ligase (AMP-forming) and 2-hydroxybenzoyl-CoA reductase (dehydroxylating), catalyzing (1) 2-hydroxybenzoate + MgATP + CoASH → 2-hydroxybenzoyl-CoA + MgAMP + PPi (2) 2-hydroxybenzoyl-CoA + 2[H] → benzoyl-CoA + H2O Benzoyl-CoA was dearomatized by reduction of the ring. This represents another case in which benzoyl-CoA is a central intermediate in anaerobic aromatic metabolism. Received: 1 February 1996 / Accepted: 24 February 1996  相似文献   

16.
The denitrifying bacterium Azoarcus anaerobius LuFRes1 grows anaerobically with resorcinol (1,3-dihydroxybenzene) as the sole source of carbon and energy. The anaerobic degradation of this compound was investigated in cell extracts. Resorcinol reductase, the key enzyme for resorcinol catabolism in fermenting bacteria, was not present in this organism. Instead, resorcinol was hydroxylated to hydroxyhydroquinone (HHQ; 1,2,4-trihydroxybenzene) with nitrate or K3Fe(CN)6 as the electron acceptor. HHQ was further oxidized with nitrate to 2-hydroxy-1,4-benzoquinone as identified by high-pressure liquid chromatography, UV/visible light spectroscopy, and mass spectroscopy. Average specific activities were 60 mU mg of protein−1 for resorcinol hydroxylation and 150 mU mg of protein−1 for HHQ dehydrogenation. Both activities were found nearly exclusively in the membrane fraction and were only barely detectable in extracts of cells grown with benzoate, indicating that both reactions were specific for resorcinol degradation. These findings suggest a new strategy of anaerobic degradation of aromatic compounds involving oxidative steps for destabilization of the aromatic ring, different from the reductive dearomatization mechanisms described so far.  相似文献   

17.
In the aerobic metabolism of aromatic substrates, oxygenases use molecular oxygen to hydroxylate and finally cleave the aromatic ring. In the case of the common intermediate benzoate, the ring cleavage substrates are either catechol (in bacteria) or 3,4-dihydroxybenzoate (protocatechuate, mainly in fungi). We have shown before that many bacteria, e.g. Azoarcus evansii, the organism studied here, use a completely different mechanism. This elaborate pathway requires formation of benzoyl-CoA, followed by an oxygenase reaction and a nonoxygenolytic ring cleavage. Benzoyl-CoA transformation is catalyzed by the iron-containing benzoyl-CoA oxygenase (BoxB) in conjunction with an FAD and iron-sulfur centers containing reductase (BoxA), which donates electrons from NADPH. Here we show that benzoyl-CoA oxygenase actually does not form the 2,3-dihydrodiol of benzoyl-CoA, as formerly postulated, but the 2,3-epoxide. An enoyl-CoA hydratase (BoxC) uses two molecules of water to first hydrolytically open the ring of 2,3-epoxybenzoyl-CoA, which may proceed via its tautomeric seven-membered oxepin ring form. Then ring C2 is hydrolyzed off as formic acid, yielding 3,4-dehydroadipyl-CoA semialdehyde. The semialdehyde is oxidized by a NADP+-dependent aldehyde dehydrogenase (BoxD) to 3,4-dehydroadipyl-CoA. Final products of the pathway are formic acid, acetyl-CoA, and succinyl-CoA. This overlooked pathway occurs in 4–5% of all bacteria whose genomes have been sequenced and represents an elegant strategy to cope with the high resonance energy of aromatic substrates by forming a nonaromatic epoxide.  相似文献   

18.
19.
A heterogeneous mixed culture, originally collected from two different sources, namely cow-drug and sludge from the mineral medium containing 1% glucose and then adapted on benzene as the carbon and energy source. Under anaerobic conditions benzene was degraded via benzoic acid as a major intermediate in the benzene degradation pathway. The degradation rate of benzene was improved stepwise by the number of enrichments and optimization of the culture medium. The effects of microaerobic conditions and/or physicochemical treatment with H2O2 prior to anaerobic degradation were studied with respect to variations in benzene degradation rate, growth of biomass and gas produced is less than the theoretical value expected and the percentage of methane in the product gas was very small (3%–3.5%). The reason for this is not well understood but it is presumed that the major group of benzene-degrading bacteria present in the culture medium are sulphate reducers and the mixed consortium is unable to degrade certain complex aromatic intermediates in the benzene degradation pathway under the experimental conditions. For an actual explanation of the situation arising in this study, further investigations must be carrie out. However, the mixed culture is capable of oxidizing benzene more rapidly to intermediate compounds and also partly into gas under the culture conditions, compared to the published data for the anaerobic degradation of benzene.  相似文献   

20.
Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号