首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biodesulfurization and the upgrading of petroleum distillates   总被引:30,自引:0,他引:30  
Biotechnology offers an alternative way to process fossil fuels. There have been several important advances in the elucidation of the mechanisms of biodesulfurization and the development of a biocatalytic desulfurization process. These include a detailed analysis of the rate and extent of desulfurization of real target molecules in a diesel matrix, the directed evolution of rate- and extent-limiting enzymes for better performance and the expression of the genes in alternative hosts. Process innovations include new reactor designs, separations and recovery strategies and the production of value-added byproducts during desulfurization.  相似文献   

2.
Coal is one of the most important sources of fossil energy on earth. However, direct combustion of coal with a high sulfur content can cause various environmental problems. Other constituents of coal that can cause environmental problems include iron oxide (hematite), iron hydroxide, and silica. In this study, growing and resting cells of Rhodococcus erythropolis strains PD1, R1, and FMF, and R. qingshengii were used in heterotrophic removal of sulfur and bioleaching of iron and silica from coal. All of the mentioned strains have an ability of dibenzothiophene (DBT) desulfurization via 4-S pathway. 2-hydroxybiphenyl, sulfate, and ferric ions (Fe3+) were assayed by Gibb’s test, barium chloride (BaCl2), and thiocyanate ions (SCN?), respectively. FTIR and XRF analyzer were used for detection of the coal bioleaching process by the selected strain of R. erythropolis (PD1). Results indicated that all strains have the ability to grow on coal as the sulfur source. Among them, strain PD1 produced the highest optical density and continued to grow even after 150-h incubation. In both growing- and resting-cells experiments, strain PD1 desulfurized coal most readily compared to other strains. Results of XRF showed that growing cells of strain PD1 had high desulfurizing ability of coal (46%) compared to resting cells in the absence of any carbon sources (24%). Growing cells of strain PD1 also leached 46% of the iron and 14% of the silicate after 7?days of incubation. Resting cells of PD1 leached 32% of the iron as determined by XRF analysis. Also, growing cells of PD1 removed most SiO2 from coal as detected and confirmed by FTIR and XRF. To the best of our knowledge, this is the first report on bioleaching of iron and silica from coal by R. erythropolis strain PD1, making it a suitable candidate for coal bioremediation.  相似文献   

3.
Microbial desulfurization has been extensively studied as a promising alternative to the widely applied chemical desulfurization process. Sulfur removal from petroleum and its products becomes essential, as the environmental regulations become increasingly stringent. Rhodococcus qingshengii IGTS8 has gained ground as a naturally occurring model biocatalyst, due to its superior specific activity for desulfurization of dibenzothiophene (DBT). Recalcitrant organic sulfur compounds—DBT included—are preferentially removed by selective carbon-sulfur bond cleavage to avoid a reduction in the calorific value of the fuel. The process, however, still has not reached economically sustainable levels, as certain limitations have been identified. One of those bottlenecks is the repression of catalytic activity caused by ubiquitous sulfur sources such as inorganic sulfate, methionine, or cysteine. Herein, we report an optimized culture medium for wild-type stain IGTS8 that completely alleviates the sulfate-mediated repression of biodesulfurization activity without modification of the natural biocatalyst. Medium C not only promotes growth in the presence of several sulfur sources, including DBT, but also enhances biodesulfurization of resting cells grown in the presence of up to 5 mM sulfate. Based on the above, the present work can be considered as a step towards the development of a more viable commercial biodesulfurization process.  相似文献   

4.
Abstract The effects of cobalt ions on the activities of Rhodococcus rhodochrous M8 enzymes for nitrile utilization, nitrile hydratase and amidase, were investigated. In contrast to amidase, synthesis of nitrile hydratase and its activity required cobalt ions in the growth medium. Northern blot analysis showed that in the presence of cobalt ions, the level of mRNA for nitrile hydratase genes was several times higher than that under cobalt-limited conditions. It was assumed that the low nitrile hydratase activity in cells grown in the absence of cobalt ions is connected either with the weak expression of nitrile hydratase genes or with the rapid degradation of nitrile hydratase mRNA.  相似文献   

5.
6.
Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous.  相似文献   

7.
Baboshin  M. A.  Finkelstein  Z. I.  Golovleva  L. A. 《Microbiology》2003,72(2):162-166
The transformation of fluorene by Rhodococcus rhodochrous strain 172 grown on sucrose and Pseudomonas fluorescens strain 26K grown on glycerol was studied as a function of the substrate concentration and the growth phase. Under certain cultivation conditions, fluorene was completely consumed from the medium. The specific transformation rate of fluorene was considerably higher when it was transformed in the presence of the cosubstrates than when it served as the sole carbon source. An approach to the evaluation of the specific transformation rate of fluorene during batch cultivations is proposed.  相似文献   

8.
Biodesulfurization (BDS) of dibenzothiophene (DBT) was carried out by Rhodococcus erythropolis IGST8 decorated with magnetic Fe3O4 nanoparticles, synthesized in‐house by a chemical method, with an average size of 45–50 nm, in order to facilitate the post‐reaction separation of the bacteria from the reaction mixture. Scanning electron microscopy (SEM) showed that the magnetic nanoparticles substantially coated the surfaces of the bacteria. It was found that the decorated cells had a 56% higher DBT desulfurization activity in basic salt medium (BSM) compared to the nondecorated cells. We propose that this is due to permeabilization of the bacterial membrane, facilitating the entry and exit of reactant and product, respectively. Model experiments with black lipid membranes (BLM) demonstrated that the nanoparticles indeed enhance membrane permeability. Biotechnol. Bioeng. 2009;102: 1505–1512. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
Abstract Rhodococcus rhodochrous NCIMB 13064 can dehalogenate and utilise a number of halogenated aliphatic compounds as sole carbon and energy source. Mutants of NCIMB13064 can be easily isolated with an enlarged range of 1-chloroalkane utilising ability. Dehalogenation of 1-chlorononane, 1-chlorodecane and short-chain 1-chloroalkanes (C3-C8) is encoded by the same plasmid pRTL1. However, a different genetic element(s) is required for the dehalogenation of 3-chloropropionic acid. Two derivatives (P200 and P400) of R. rhodochrous NCIMB 13064 were isolated which had acquired the ability to utilise naphthalene as sole carbon and energy source. Both strains lost the ability to utilise short-chain 1-chloroalkanes and underwent some rearrangements associated with pRTLl plasmid.  相似文献   

10.
cis,cis-Muconate cycloisomerase was purified to homogeneity from cells of Rhodococcus rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single cycloisomerase was found to be induced in this organism with no isoforms being detected when R. rhodochrous N75 was grown on either benzoate or p-toluate as the sole source of carbon. The enzyme is hexameric with a single subunit Mr of 40,000. cis,cis-Muconate cycloisomerase from R. rhodochrous N75 displayed strict regio- and stereospecificity whereby cis,cis-muconate is cycloisomerized to (4S)-muconolactone and 2-methyl- and 3-methyl-substituted muconates are cycloisomerized to 2-methyl- and 4-methyl-substituted muconolactones by 1,4- and 3,6-cycloisomerization, respectively.  相似文献   

11.
Biodesulfurization of refractory organic sulfur compounds in fossil fuels   总被引:3,自引:0,他引:3  
The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.  相似文献   

12.
We sought the optimum conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. The use of isovaleronitrile or isobutyronitrile as an inducer greatly enhanced benzonitrilase formation. When Rhodococcus rhodochrous J1 was cultivated at 28°C for 96 h in a medium consisting of 0.1 ml of isovaleronitrile, 0.5 g of polypeptone, 0.3 g of malt extract, 0.3 g of yeast extract and 1 g of glycerol per 100 ml of tap water (pH 7.2), and isovaleronitrile was fed twice at the concentrations of 0.1% (v/v) and 0.2% (v/v) at 55 h and 77 h, respectively, during the course of cultivation, the enzyme activity in the culture broth reached approximately 3,100-times higher than the initially obtained level.  相似文献   

13.
A possibility has been suggested of applying the EPS produced by Rhodococcus rhodochrous strain S-2 (S-2 EPS) to the bioremediation of oil-contaminated environments, because its addition, together with minerals, to oil-contaminated seawater resulted in emulsification of the oil, increased the degradation of polyaromatic hydrocarbons (PAH) of the oil, and led to the dominance of PAH-degrading marine bacteria. To understand the underlying principles of these phenomena, we determined the chemical structure of the sugar chain of S-2 EPS. The EPS was found to be composed of D-galactose, D-mannose, D-glucose, and D-glucuronic acid, in a molar ratio of 1:1:1:1. In addition, 0.8% (w/w) of octadecanoic acid and 2.7% (w/w) of hexadecanoic acid were also contained in its structure. By 1H and 13C NMR spectroscopy, including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments, as well as chemical and enzymatic analyses, the polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: (see formula in text).  相似文献   

14.
Whole cells of the bacterium Rhodococcus rhodochrous LL100-21, which had been grown on benzonitrile to induce the nitrilase enzyme, converted benzonitrile to benzohydroxamic acid in the presence of hydroxylamine.  相似文献   

15.
Whole cells and cell-free extracts derived from Rhodococcus rhodochrous NCIMB 11216 were shown to hydrolyse both aliphatic and aromatic nitriles, when the organism had been grown on either propionitrile or benzonitrile as the source of carbon and nitrogen. Whole cell suspensions and cell-free extracts derived from bacteria grown on either substrate were able to biotransform R-(-),S-(+)-2-methylbutyronitrile. The S-(+) enantiomer was biotransformed more rapidly than the the R-(-) enantiomer. For whole cell biotransformations at 30°C, the maximum enantiomeric excess (ee) of the remaining R-(-)-2-methylbutyronitrile was 93% when 70% of the R-(-) enantiomer had been converted to the product, 2-methylbutyric acid. For the corresponding biotransformation at 4°C, there was an ee of 93% for the residual R-(-) enantiomer of the substrate when only 60% of it had been converted to product. For biotransformations by cell-free extracts at 30°C the 2-methylbutyric acid product had an ee of 17% for the S-(+) enantiomer at the time of optimal ee for the remaining R-(-) enantiomer of the substrate. In contrast, when the reaction was carried out by whole cells, the ee for the product acid was 0.36%. This was probably due to further, non-selective metabolism of the acid, which was especially significant at the beginning of the reaction. At both temperatures, the ee for the S-(+) enantiomer of 2-methylbutyric acid was at a maximum in the early stage of the biotransformation; for example, at 4°C the maximum detectable ee was 100% when the yield was 11%.Abbreviations EDTA Ethylenediaminetetraacetic acid - ee enantiomeric excess - FID flame ionisation detector - GC gas chromatography - 1HNMR H nuclear magnetic resonance - K m Michaelis constant - NCIMB National Collection of Industrial and Marine Bacteria - td doubling time - V max Maximum velocity  相似文献   

16.
Biocatalytic hydration of 3-methyl- or 3-ethyl-2-butenolide with resting cells of Rhodococcus rhodochrous ATCC 17895 gave the corresponding (R)-3-hydroxy-3-alkylbutanolide in moderate yield and with 95% e.e. © Rapid Science Ltd. 1998  相似文献   

17.
Rhodococcus rhodochrous was grown in the presence of oneof three plasticizers: bis 2-ethylhexyl adipate (BEHA), dioctyl phthalate (DOP) ordioctyl terephthalate (DOTP). None of the plasticizers were degraded unless anothercarbon source, such as hexadecane, was also present. When R. rhodochrous was grownwith hexadecane as a co-substrate, BEHA was completely degraded and the DOP was degraded slightly. About half of the DOTP was degraded, if hexadecane were present.In all of these growth studies, the toxicity of the media, which was assessed usingthe Microtox assay, increased as the organism degraded the plasticizer. In each case, therewas an accumulation of one or two intermediates in the growth medium as the toxicityincreased. One of these was identified as 2-ethylhexanoic acid and it was observed forall three plasticizers. Its concentration increased until degradation of the plasticizershad stopped and it was always present at the end of the fermentation. The other intermediatewas identified as 2-ethylhexanol and this was only observed forgrowth in the presence of BEHA. The alcohol was observed early in the growth studies with BEHA and haddisappeared by the end of the experiment. Both the 2-ethylhexanol and 2-ethylhexanoicacid were shown to be toxic and their presence explained the increase of toxicity asthe fermentations proceeded. The appearance of these intermediates was consistent with similar degradation mechanisms for all three plasticizers involving hydrolysisof the ester bonds followed by oxidation of the released alcohol.  相似文献   

18.
Abstract A Gram-positive bacterium with the ability to utilize o -toluidine as sole source of carbon and nitrogen was isolated from soil. The organism was identified as Rhodococcus rhodochrous Sb 4. 3-Methylcatechol and the meta-fission product of 3-methylcatechol were identified as metabolites. A pathway for the degradation of o -toluidine is proposed.  相似文献   

19.
20.
Muconate cycloisomerase (MCI) was purified from Rhodococcus rhodochrous 89 grown on phenol. The enzyme appears to contain two different type subunits with molecular masses 35.5 and 37 kD. The N-terminal amino acid sequence of both subunits showed more similarity to corresponding enzymes from gram-negative bacteria than to one from Rhodococcus opacus 1CP. MCI from R. rhodochrous 89, like analogous enzymes from gram-negative bacteria, can convert 2-chloromuconate (2-CM) with the formation of both, 2- and 5-chloromuconolactones (CML) as intermediates. Nevertheless, its unique ability to convert 5-CML to cis- but not to trans-dienelactone sets it apart from all known chloromuconate cycloisomerases from gram-negative and gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号