首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear pore complex (NPC) shuttles cargo across the nuclear envelope. Here we present single-particle cryo-EM structure of the nuclear ring (NR) subunit from Xenopus laevis NPC at an average resolution of 5.6 Å. The NR subunit comprises two 10-membered Y complexes, each with the nucleoporin ELYS closely associating with Nup160 and Nup37 of the long arm. Unlike the cytoplasmic ring (CR) or inner ring (IR), the NR subunit contains only one molecule each of Nup205 and Nup93. Nup205 binds both arms of the Y complexes and interacts with the stem of inner Y complex from the neighboring subunit. Nup93 connects the stems of inner and outer Y complexes within the same NR subunit, and places its N-terminal extended helix into the axial groove of Nup205 from the neighboring subunit. Together with other structural information, we have generated a composite atomic model of the central ring scaffold that includes the NR, IR, and CR. The IR is connected to the two outer rings mainly through Nup155. This model facilitates functional understanding of vertebrate NPC.Subject terms: Cryoelectron microscopy, Nuclear envelope  相似文献   

2.
The plastid division apparatus (called the plastid-dividing ring) has been detected in several plant and algal species at the constricted region of plastids by transmission electron microscopy. The apparatus is composed of two or three rings: an outer ring in the cytosol, an inner ring in the stroma, and a middle ring in the intermembrane space. The components of these rings are not clear. FtsZ, which forms the bacterial cytokinetic ring, has been proposed as a component of both the inner and outer rings. Here, we present the ultrastructure of the outer ring at high resolution. To visualize the outer ring by negative staining, we isolated dividing chloroplasts from a synchronized culture of a red alga, Cyanidioschyzon merolae, and lysed them with nonionic detergent Nonidet P-40. Nonidet P-40 extracted primarily stroma, thylakoids, and the inner and middle rings, leaving the envelope and outer ring largely intact. Negative staining revealed that the outer ring consists of a bundle of 5-nm filaments in which globular proteins are spaced 4.8 nm apart. Immunoblotting using an FtsZ-specific antibody failed to show immunoreactivity in the fraction containing the filament. Moreover, the filament structure and properties are unlike those of known cytoskeletal filaments. The bundle of filaments forms a very rigid structure and does not disassemble in 2 M urea. We also identified a dividing phase-specific 56-kD protein of chloroplasts as a candidate component of the ring. Our results suggest that the main architecture of the outer ring did not descend from cyanobacteria during the course of endosymbiosis but was added by the host cell early in plant evolution.  相似文献   

3.
The time courses of chloroplast and mitochondrial division and the morphological changes in the plastid-dividing ring (PD ring) and mitochondrion-dividing ring (MD ring) during chloroplast and mitochondrial division were studied in Cyanidioschyzon merolae De Luca, Taddei and Varano. To accomplish this, chloroplast and cell division of living cells were continuously video-recorded under light microscopy, and the morphological changes in the PD and MD rings were analyzed quantitatively and three-dimensionally by transmission electron microscopy (TEM). Under the light microscope, the diameters of the chloroplast and the cell decreased at uniform velocities, the speed depending on the temperature. To study in detail the sequential morphological change of the mitochondrion in M phase and the contractile mechanism in the divisional planes of the chloroplast and the mitochondrion, we observed the PD and MD rings, which are believed to promote contraction, under TEM, using the diameter of the chloroplast as an index of the time. Three PD rings (an outer PD ring on the cytoplasmic face of the outer envelope, a middle PD ring in the intermembrane space, and an inner PD ring on the stromal face of the inner envelope) were clearly observed, but only the outer MD ring could be observed. The PD ring started to contract soon after it formed, while the contraction of the MD ring did not occur immediately after formation, but was delayed until the contraction of the PD ring was almost complete. Once the MD ring began to contract, the rate of decrease of its circumference was 4 times as high as that of the PD ring. As the outer PD and MD rings contracted, they grew thicker and maintained a constant volume, while the thickness of the inner PD ring did not change and its volume decreased at a constant rate with contraction. In the early stage of contraction, the widths of the three PD rings increased in order, from the outer to the inner ring. With contraction, their widths changed at different rates until they came to have much the same width. In cross-section, the MD ring was wider where it was next to the chloroplast than at the opposite side, adjacent to the nucleus in the early stage of contraction. By the late stage, the widths of the two sides became equal. In our observations, the microbody elongated along the outer MD ring and touched the outer PD ring during contraction of the PD and MD rings. These results clearly revealed differences between the mode of contraction of the outer, middle, and inner PD rings, and between the PD and the MD rings. They also revealed the coordinated widening of the three PD rings, and suggested that the microbody plays a role in the contraction of the PD and MD rings. Received: 1 July 1998 / Accepted: 1 September 1998  相似文献   

4.
Annular structures in isolated nuclei of Physarum polycephalum   总被引:2,自引:0,他引:2  
Whole-mount preparations of isolated interphase nuclei of Physarum polycephalum show annular structures. The outer and inner diameters are about 1 080 and 580 Å respectively. Ultrastructural features of the annuli are described; an association of the rings with fibers of various diameters, probably of chromatin nature, is also reported.  相似文献   

5.
6.
During plastid division, two structures have been detected at the division site in separate analyses. The plastid-dividing ring can be detected by transmission electron microscopy as two (or three) electron-dense rings: an outer ring on the cytosolic face of the outer envelope, occasionally a middle ring in the intermembrane space, and an inner ring on the stromal face of the inner envelope. The FtsZ ring, which plays a central role in bacterial division, also is involved in plastid division and is believed to have descended to plastids from cyanobacterial endosymbiosis. The relationship between the two structures is not known, although there is discussion regarding whether they are identical. Biochemical and immunocytochemical investigations, using synchronized chloroplasts of the red alga Cyanidioschyzon merolae, showed that the plastid FtsZ ring is distinct and separable from the plastid-dividing ring. The FtsZ ring localizes in stroma and faces the inner plastid-dividing ring at the far side from the inner envelope. The FtsZ ring and the inner and outer plastid-dividing rings form in that order before plastid division. The FtsZ ring disappears at the late stage of constriction before dissociation of the plastid-dividing ring, when the constriction is still in progress. Our results suggest that the FtsZ ring;-based system, which originated from a plastid ancestor, cyanobacteria, and the plastid-dividing ring;-based system, which probably originated from host eukaryotic cells, form a complex and are involved in plastid division by distinct modes.  相似文献   

7.
Cyanelles of glaucocystophytes may be the most primitive of the known plastids based on their peptidoglycan content and the sequence phylogeny of cyanelle DNA. In this study, EM observations have been made to characterize the cyanelle division of Cyanophora paradoxa Korshikov and to gain insights into the evolution of plastid division. Constriction of cyanelles involves ingrowth of the septum at the cleavage site with the inner envelope membrane invaginating at the leading edge and the outer envelope membrane invaginating behind the septum. This means the inner and outer envelope membranes do not constrict simultaneously as they do in plastid division in other plants. The septum and the cyanelle envelope became stained after a silver‐methenamine staining was applied for in situ detection of polysaccharides. Septum formation was inhibited by β‐lactams and vancomycin, which are potent inhibitors of bacterial peptidoglycan biosynthesis. These results suggest the presence of peptidoglycan at the septum and the cyanelle envelope. In dividing cyanelles, a single electron‐dense ring (cyanelle ring) was observed on the stromal face of the inner envelope membrane at the isthmus, but no ring‐like structures were detected on the outer envelope membrane. Thus a single, stromal cyanelle ring such as this is quite unique and also distinct from FtsZ rings, which are not detectable by TEM. These features suggest that the cyanelle division of glaucocystophytes represents an intermediate stage between cyanobacterial and plastid division. If monophyly of all plastids is true, the cyanelle ring and the homologous inner plastid dividing ring might have evolved earlier than the outer plastid dividing ring.  相似文献   

8.
On the basis of morphological features, 10 consecutive structural phases of spermatids were identified in Chara vulgaris spermiogenesis. They were schematically presented. In early and middle spermiogenesis, i.e. during the period preceding formation of fibrillar structure of mature spermatozoid nucleus, a slight remodelling of chromatin, accompanied by proplastid transformation into an amyloplast as well as by development of 2 flagella and a microtubular manchette, is observed. First, condensed chromatin concentrates around the nuclear envelope (phases III-V) and then it transforms into a network-like structure (phase VI). This change in chromatin structure is preceded by nucleolar extrusion to the cytoplasm where nucleoli become degraded (phase IV) and by a dynamic development of rough endoplasmic reticulum (RER) (phase V) which is continuous with the nuclear envelope and with RER of the adjacent spermatids via plasmodesmata. The inner membrane of the nuclear envelope invaginates into the nucleoplasm in which "nuclear reticulum" appears. It all happens during increased 3H-arginine and 3H-lysine incorporation into proteins which are rapidly translocated into the nucleus. In medium-late spermiogenesis (phases VI-VIII), network-like condensed chromatin disappears. Next, the structure of the nucleus changes dramatically. Short, randomly positioned fibrils (phase VII) appear and gradually become longer (phase VIII), thicker (phase IX) and more distinct, lying parallel to the surface of elongating and curling nucleus. Membranes of the nuclear envelope become closer to each other and a distinct dark layer--probably lamin--appears adhering to the inner membrane of the nuclear envelope. Towards the end of spermiogenesis (phase X), very densely packed parallel helices, ca 2 nm in diameter, are visible. The surfaces of flagella and the spermatozoid are covered with diamond-shaped larger and smaller scales, respectively. Helically coiled spermatozoids are liberated from antheridial filament cells through earlier created (phase VIII) "liberation pores" with pads of unknown nature.  相似文献   

9.
Octagonal nuclear pores   总被引:15,自引:15,他引:0       下载免费PDF全文
Negative staining of isolated nuclear envelopes by phosphotungstate shows that the nuclear pores are octagonal rather than circular. Pores of the same shape and approximately the same width, 663 ± 5 A, were demonstrated in the newt, Triturus, the frog, Rana, and the starfish, Henricia. The outer and inner diameters of the annulus associated with each pore are respectively greater and less than the width of the pore itself. For this reason surface views of the envelope, unless negatively stained, fail to show the true dimensions of the pores.  相似文献   

10.
RNA TRANSPORT FROM NUCLEUS TO CYTOPLASM IN CHIRONOMUS SALIVARY GLANDS   总被引:40,自引:31,他引:9       下载免费PDF全文
The fine structure and cytochemistry of the extremely large RNA puffs, or Balbiani rings, in salivary gland nuclei of midge, Chironomus thummi, larvae have been investigated. The Balbiani rings are composed of a diffuse mass of electron-opaque 400 to 500 A granules, short threads about 180 to 220 A in diameter and associated fine chromatin fibrils. These components appear to be organized into brushlike elements which form the ring. Electron microscope cytochemistry has shown that the granules and short threads contain RNA. After ribonuclease digestion, only 50 to 100 A chromatin fibrils were apparent in the Balbiani ring, and the granules were no longer demonstrable. Deoxyribonuclease digestion had no apparent effect on these structures. Observations indicate that the granules are formed from the short threads and released into the nucleoplasm in which they are evenly distributed. At the nuclear envelope, many granules have been observed partially or completely within the nuclear pores. These granules become elongated and are shown to penetrate the center of the pore in a rodlike form, about 200 A in diameter. The Balbiani ring granules are not normally visible within the cytoplasm adjacent to the nuclear envelope, but have been rarely found in this region. It is suggested that the granules represent the product of the Balbiani ring, possibly a messenger RNA bound to protein, and that they regularly pass into the cytoplasm through a narrow central channel in the pores of the nuclear envelope.  相似文献   

11.
H. Hashimoto 《Protoplasma》1986,135(2-3):166-172
Summary Ultrastructure of the constricting neck of dividing proplastids and young chloroplasts in the first leaves ofAvena sativa was examined by electron microscopy. An electron-dense, double ring structure (plastid-dividing ring doublet; PD ring doublet) with a width of 15–40 nm was revealed around the narrow neck of the constricted and dividing plastids by serial section technique. The inner and outer ring of the doublet coated the inside (stromal side) of the inner envelope membrane and the outside (cytoplasmic side) of the outer envelope membrane, respectively. However, electron-dense materials were not observed within the lumen between the outer and inner envelope membranes.Although the PD ring doublet was commonly observed in the constricted plastids with a 70–140 nm wide neck, they could be scarcely observed in the constricted plastids with a 160 or more nm wide neck. The components of the PD ring were assumed not to be concentrated enough to identify by electron microscopy in the early stage of constriction and the PD ring may be formed and recognized at the final stage.The significance of the formation of the PD ring and its role in plastokinesis (plastid kinesis) were discussed.  相似文献   

12.
Chromatin and inner layer nuclear envelope were isolated from chicken erythrocyte nuclei. Two antisera against dehistonized chromatin and nuclear envelope of chicken erythrocytes were obtained. Using the antiserum against dehistonized chromatin of erythrocytes we found: the presence of the antigens at approximate mol. wts of 56,000 and 77,000 tightly bound with DNA and characteristic of only erythrocyte chromatin; localized antigens at approximate mol. wts of 63,000, 68,000 and 92,000 tightly bound with DNA and common only for chromatin and nuclear envelope of chicken erythrocytes; heterogeneity of the antigens tightly bound with DNA. Using the antiserum against inner layer nuclear envelope we did not find antigens specific only for nuclear envelope and absent in erythrocyte chromatin. Some of the antigens were present in the control preparations of chicken liver chromatin and may be regarded as being species specific.  相似文献   

13.
The cell envelope of the hyperthermophilic sulphur-reducing archaebacterium Pyrobaculum organotrophum H10 was found to be composed of two distinct hexagonally arranged crystalline protein arrays. Electron microscopic analysis of freeze-etched cells and isolated envelopes in conjunction with image processing showed that the inner layer (lattice centre-to-centre spacing 27.9 nm) is essentially identical to the protein array of Pyrobaculum islandicum GEO3, a complex, rigid structure implicated in the maintenance of cell shape. The outer layer has clear p6 symmetry and a lattice spacing of 20.6 nm. Its three-dimensional structure was reconstructed from a negative stain tilt series of an intact double-layered envelope using Fourier filtration to separate the desired information from the other lattices present. The outer layer is a unique, porous network of blocklike dimers disposed around six-fold axes, and exhibits minimal asymmetry between its inner and outer faces. It appears to be rather loosely associated with the outer surface of the inner layer. In most H10 envelopes, the inner layer is orientated with one base vector exactly perpendicular to the long axis of the cell, so that the cylindrical portion is composed of a series of parallel cell-girdling hoops of hexameric morphological units. All the other known Pyrobaculum strains were found to have a GEO3-type envelope structure, consisting of a single rigid protein array and a fibrous capsule. Although H10 does not possess a capsule, fibrils appear to be sandwiched between the two protein layers.  相似文献   

14.
A possible skeletal substructure of the macronucleus of Tetrahymena   总被引:1,自引:1,他引:0       下载免费PDF全文
Upon removal of chromatin from isolated macronuclei of tetrahymena, residual structures are obtained, the organization of which faithfully reflects the distinctive architecture of the macronucleus. Macronuclei are isolated by a new procedure in which cells are lysed by immersion in citric acid and Triton X-100. This method is rapid and efficient and leaves the nuclear structures stripped of nuclear envelope and nucleoli. The remaining interconnected chromatin bodies are structurally differentiated into a dense outer shell and a fibrillar inner core. The fibrillar component is identified as chromatin because it is removed upon digestion with DNase and extraction with 2 M NaCl. The dense shell of the chromatin body is unaffected by the digestion procedure, which leaves a skeletal structure comprised of hollow spherical bodies. Analysis of the protein composition by SDS acrylamide gel electrophoresis before and after digestion with DNase and RNase and high-salt extraction shows that histones are diminished, whereas the nonhistone protein composition remains unchanged. It was found the DNase not only extracts chromatin but also protects the nonchromatin structure from the otherwise disruptive effects of high-salt extraction. The method used for isolating the nuclei also affects the structure remaining after the digestion procedure the citric acid/Triton X-100 method enhances the stability of the interconnected spherical bodies. The results indicate that the method for isolating nuclei and the procedure by which chromatin is extracted are both major factors contributing to the detection of a possible nonchromatin nuclear skeleton.  相似文献   

15.
Stepwise reassembly of the nuclear envelope at the end of mitosis   总被引:23,自引:8,他引:15       下载免费PDF全文
The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane- derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.  相似文献   

16.
Miyagishima S  Kuroiwa H  Kuroiwa T 《Planta》2001,212(4):517-528
The timing and manner of disassembly of the apparatuses for chloroplast division (the plastid-dividing ring; PD ring) and mitochondrial division (the mitochondrion-dividing ring; MD ring) were investigated in the red alga Cyanidioschyzon merolae De Luca, Taddei and Varano. To do this, we synchronized cells both at the final stage of and just after chloroplast and mitochondrial division, and observed the rings in three dimensions by transmission electron microscopy. The inner (beneath the stromal face of the inner envelope) and middle (in the inter-membrane space) PD rings disassembled completely, and disappeared just before completion of chloroplast division. In contrast, the outer PD and MD rings (on the cytoplasmic face of the outer envelope) remained in the cytosol between daughter organelles after chloroplast and mitochondrial division. The outer rings started to disassemble and disappear from their surface just after organelle division, initially clinging to the outer envelopes at both edges before detaching. The results suggest that the two rings inside the chloroplast disappear just before division, and that this does not interfere with completion of division, while the outer PD and MD rings function throughout and complete chloroplast and mitochondrial division. These results, together with previous studies of C. merolae, disclose the entire cycle of change of the PD and MD rings. Received: 19 May 2000 / Accepted: 3 August 2000  相似文献   

17.
A characteristic feature of eukaryotic cells is the presence of nuclear envelope (NE) which separates genomic DNA from cytoplasm. NE is composed of inner nuclear membrane (INM), which interacts with chromatin, and outer nuclear membrane, which is connected to endoplasmic reticulum. Nuclear pore complexes are inserted into NE to form transport channels between nucleus and cytoplasm. In metazoan cells, an intermediate filament-based meshwork called as nuclear lamina exists between INM and chromatin. Sophisticated collaboration of these molecular machineries is necessary for the structure and functions of NE. Recent research advances have revealed that NE dynamically communicates with chromatin and cytoskeleton to control multiple nuclear functions. In this mini review, I briefly summarize the basic concepts and current topics of functional relationships between NE and chromatin.  相似文献   

18.
HAOSHUI 《Cell research》1992,2(2):153-163
In this study,freeze-fractured specimens of allium cepa root tip meristems were examined under the scanning electron microscope(SEM),This technique permitted the visualization of the outer membrane of the nuclear envelope with nuclear pore complexes and polyribosomes.Some of the cell nuclei prepared with this procedure had fissures of various widths on their nuclear envelopes through which the nuclear lamina-like filaments(LLF) undernearth the nucleoplasmic side of the envelopes were clearly visible.The diameters of these filaments veried between 25 and 125nm.Many of the LLFs showed granular thickenings at places,and were attached to the inner surface of nuclear envelope in some regions .Similar LLFs were also seen at the peripheries of the freeze-fractured faces of nuclei.Meanwhile,the spatial relation between the nuclear matrix filaments(NMF) and other nuclear structures(nucleoli,chromation and peripheral lamina-like filaments) was revealed in these fractured preparations.In addition,the methods and techniques in studying the nuclear lamina morphology and the roles played by NMFs in activities of various nuclear sturctures were discessed in brief.  相似文献   

19.
非洲狼尾草珠心细胞程序死亡过程的超微结构观察   总被引:4,自引:0,他引:4  
用透射电子显微镜观察了非洲狼尾草珠心细胞衰亡过程,比较明显的结果是,染色质凝集,核周腔膨大呈袋状,内有包裹着核物质的内膜突起;有些内质网槽库膨大成囊泡,能吞噬细胞质;线粒体结构简化,内嵴消失.  相似文献   

20.
Mass and molecular weight of isolated nuclear rings   总被引:1,自引:0,他引:1  
Nuclear rings are cell structures found at the nuclear cortex wedged between the nuclear envelope and the chromatin fiber network. In previous publications we have dealt with their morphology, relationships with the nuclear membranes, chromatin fibers and cytoskeletal filaments; and more recently, with their measurements at high electron microscope resolution. In this article we have calculated the mass and molecular weight of 336 isolated nuclear rings from human circulating lymphocytes using a photometric procedure and polystyrene latex spheres as the standard for weight calibration. Our results show a range of mass of 0.4-35.5 x 10(-16) g (equivalent to 0.2-21.2 x 10(8) Da with a positively skewed distribution (median: 3.3 x 10(-16) g or 2.0 x 10(8) Da). Mass and volume of nuclear rings were highly correlated. In addition, it was possible to calculate the area, the whole mass and the mass per unit area of the nuclear envelope present in the center of the nuclear rings. The mass of this area also shows a lognormal distribution (median of mass/unit area: 37.3 x 10(-8) pg/nm2 or 1.9 x 10(5) Da/nm2). We discuss the significance of this results as parameters for the characterization of the nuclear rings and their possible implications for a new interpretation of nuclear cortex architecture, nucleocytoplasmic traffic and macromolecule segregation between the two main cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号