首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pulse-labeling protocol has been used to study DNA replication and map replication origins and termini in mycoplasma viruses L2 and L2ins1. The L2 genome is circular, double-stranded DNA of 11.63 kilobase pairs (kb), and the 14.89-kb L2ins1 genome is L2 DNA containing a 3.26-kb insertion. The data show that DNA replication is bidirectional from two origins in L2 and three origins in L2ins1. The extra origin in L2ins1 arises from the fact that one of the L2 origins is in one of the sequences that have been shown to be duplicated and transposed in the generation of L2ins1 from L2.  相似文献   

2.
S R Gross  A Mary  P H Levine 《Genetics》1989,121(4):685-691
The mitochondrial genome of Neurospora is usually found in a single covalently closed circular 62-kbp DNA molecule. We report here that the mitochondrial genome of a phenotypic revertant of a stopper mutant (stp-ruv) is contained primarily in two separate, nonoverlapping, autonomously replicating circular chromosomes. The circles, one about 21 kbp and the other somewhat less than 36 kbp are derived from the most frequent classes of recombinant chromosomes (21 and 41 kbp) in the chromosomal population of mitochondria in the original stopper mutant. The new, more stable chromosomal configuration, is associated with the deletion of two sequences (1 kbp and 4 kbp) at the splice junctions of the two circles. The data suggest that both deletions are likely to have originated from a single recombinational event involved in generating the 36-kbp circle. Secondary, spontaneously arising derivatives of stp-ruv have been found to yield, at high copy number, short sections of the 21-kbp circle in covalently closed supercoiled circles varying from unit length to very high multimers. The amplified segments span a common segment likely to contain the replication origin of the 21-kbp chromosome.  相似文献   

3.
Deletion events that occur spontaneously in 36-kilobase-pair (kbp) plasmid pHH4 from the archaebacterium Halobacterium halobium were investigated. Four different deletion derivatives with sizes ranging from 5.7 to 17 kbp were isolated. Three of these deletion variants derived from pHH4 (pHH6 [17 kbp], pHH7 [16 kbp], and pHH8 [6.3 kbp]), whereas the 5.7-kbp plasmid pHH9 derived from pHH6. Strains containing pHH6, pHH7, or pHH9 each lacked the parental plasmid pHH4, while pHH8 occurred at a 1:1 ratio together with pHH4. Common to all of these plasmids was the 5.7-kbp region of pHH9 DNA. The regions containing the fusion site in the deletion derivatives were investigated and compared with the corresponding area of the parental plasmid. Each deletion occurred exactly at the terminus of an insertion element. In pHH6 and pHH7, a halobacterial insertion element (ISH2) was located at the deletion site. The DNA fused to ISH2 displayed a 7-base-pair (bp) (pHH7) or 10-bp (pHH6) sequence homology to the inverted repeat of ISH2. In the two smaller plasmids, pHH8 and pHH9, an ISH27 element was located at the deletion site. Most likely, all of these smaller plasmids resulted from an intramolecular transposition event. The ISH27 insertion sequence contains a 16-bp terminal inverted repeat and duplicates 5 bp of target DNA during the transposition with the specificity 5'ANNNT3'. Four ISH27 copies were analyzed, and two ISH27 element types were identified that have approximately 85% sequence similarity. The ISH27 insertion elements constitute a family which is related to the ISH51 family characterized for H. volcanii, another halophilic archaebacterium.  相似文献   

4.
Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.  相似文献   

5.
We have investigated the structure of chicken genomic DNA homologous to v-ets, the second cell-derived oncogene of avian retrovirus E26. We isolated a c-ets locus spanning ca. 30.0 kilobase pairs (kbp) in the chicken genome with homologies to 1,202 nucleotides (nt) of v-ets (total length, 1,508 nt) distributed in six clusters along 18.0 kbp of the cloned DNA. The 5'-distal part of v-ets (224 nt) was homologous to chicken cellular sequences contained upstream within a single 16.0-kbp EcoRI fragment as two typical exons but not found transcribed into the major 7.5-kb c-ets (or 4.0-kb c-myb) RNA species. Between these two v-ets-related cellular sequences we found ca 40.0 kbp of v-ets-unrelated DNA. Finally, the most 3' region of homology to v-ets in the cloned DNA was shown to consist of a truncated exon lacking the nucleotides coding for the 16 carboxy-terminal amino acids of the viral protein but colinear to one of the two human c-ets loci, c-ets-2.  相似文献   

6.
Cellular transformation by subgenomic feline sarcoma virus DNA   总被引:6,自引:3,他引:3       下载免费PDF全文
The genome of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV) is a 4.3-kilobase-pair (kbp) RNA molecule that contains a 1.5-kbp cellular insertion (fes gene) flanked by feline leukemia virus sequences at its 5' end (1.6 kbp) and 3' end (1.2 kbp) (Sherr et al., J. Virol. 34:200-212, 1980). DNA transfection techniques have been utilized to determine the regions of the ST-FeSV genome involved in malignant transformation. I have found that the 3.7-kbp 5'-end fragment of the ST-FeSV provirus (which corresponds to the 3.4-kbp 5'-end fragment of the viral genome) is sufficient to transform NIH/3T3 fibroblasts. Enzymes that cleave the ST-FeSV provirus DNA within the feline leukemia virus gag gene sequences or within the fes gene abolished the transforming activity. Preservation of the proviral large terminal repeats was also required for transformation. Transformed NIH/3T3 cells obtained by transfection of total or subgenomic ST-FeSV DNA expressed normal levels of the ST-FeSV gene product ST P85 and of its associated protein kinase activity. Furthermore, these cells contained high levels of phosphotyrosine residues, a biochemical marker associated with cellular transformation induced by certain retroviruses including ST-FeSV. These results, taken together, strongly support the concept that only those ST-FeSV proviral sequences necessary for ST P85 expression are involved in malignant transformation.  相似文献   

7.
A family of dispersed repeats longer than 7 kilobase pairs (kbp) has been identified in the very large genome of Lilium henryi, and two subregions cloned. Initially a rapidly reannealing probe (C0t<1 M s) was prepared by hydroxyapatite chromatography. Half the copies of all sequences repeated 15000 times per genome are expected to reanneal by this C0t value. The probe hydridized to abundant fragments of 2, 5, and 7 kbp released from genomic DNA by Bam HI digestion. Twelve 2-kb fragments and ten 5-kb sequences were cloned into pBR322. Restriction mapping of the two sets of clones showed individual members to be quite similar. Length variation was no more than 200 base pairs (bp) between repeats, and consensus sites were present on 80%–90% of occasions. In situ hybridization using representative 2-kbp and 5-kbp clones showed each sequence to be dispersed throughout all chromosomal regions. Studies on the genomic organization suggested that the 2-kbp and 5-kbp sequences are usually adjacent, and that occasional absence of the internal Bam HI site results in the release of the 7-kbP fragment. There are at least 13000 copies of the full repeat per L. henryi genome, thus accounting for approximately 0.3% of the total of 32 million kbp.  相似文献   

8.
Supercoiled Harvey sarcoma virus (Ha-SV) DNA was extracted from newly infected cells by the Hirt procedure, enriched by preparative agarose gel electrophoresis, and digested with EcoRI, which cleaved the viral DNA at a unique site. The linearized Ha-SV DNA was then inserted into lambda gtWESlambda B at the EcoRI site and cloned in an approved EK2 host. Ha-SV DNA inserts from six independently derived recombinant clones have been analyzed by restriction endonuclease digestion, molecular hybridization, electron microscopy, and infectivity. Four of the Ha-SV DNA inserts were identical, contained about 6.0 kilobase pairs (kbp), and comigrated in agarose gels with the infectious, unintegrated, linear Ha-SV DNA. One insert was approximately 0.65 kbp smaller (5.35 kbp) and one was approximately 0.65 kpb larger (6.65 kpb) than the 6.0 kpb inserts. R-looping with Ha-SV RNA revealed that the small (5.35 kbp) insert contained one copy of the Ha-SV RNA. Preliminary restriction endonuclease digestion of the recombinant DNAs suggested that the middle-size inserts contained a 0.65-kbp tandem duplication of sequences present only one in the small-size insert; this duplication corresponded to the 0.65-kpb terminal duplication of the unintegrated linear Ha-SV DNA. The large-size insert apparently contained a tandem triplication of these terminally located sequences. DNA of all three sized inserts induced foci in NIH 3T3 cells, and focus-forming activity could be rescued from the transformed cells by superinfection with helper virus. Infectivity followed single-hit kinetics, suggesting that the foci were induced by a single molecule.  相似文献   

9.
10.
ABSTRACT. Analysis of total DNA isolated from the Chrysophyte alga Ochromonas danica revealed, in addition to nuclear DNA, two genomes present as numerous copies per cell. The larger genome (?120 kilobase pairs or kbp) is the plastid DNA, which is identified by its hybridization to plasmids containing sequences for the photosynthesis genes rbcL, psbA, and psbC. The smaller genome (40 kbp) is the mitochondrial genome as identified by its hybridization with plasmids containing gene sequences of plant cytochrome oxidase subunits I and II. Both the 120- and 40-kbp genomes contain genes for the small and large subunits of rDNA. The mitochondrial genome is linear with terminal inverted repeats of about 1.6 kbp. Two other morphologically similar species were examined, Ochromonas minuta and Poteriochromonas malhamensis. All three species have linear mitochondrial DNA of 40 kbp. Comparisons of endonuclease restriction-fragment patterns of the mitochondrial and chloroplast DNAs as well as those of their nuclear rDNA repeats failed to reveal any fragment shared by any two of the species. Likewise, no common fragment size was detected by hybridization with plasmids containing heterologous DNA or with total mitochondrial DNA of O. danica; these observations support the taxonomic assignment of these three organisms to different species. The Ochromonas mitochondrial genomes are the first identified in the chlorophyll a/c group of algae. Combining these results with electron microscopic observations of putative mitochondrial genomes reported for other chromophytes and published molecular studies of other algal groups suggests that all classes of eukaryote algae may have mitochondrial genomes < 100 kbp in size, more like other protistans than land plants.  相似文献   

11.
Linear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and λ phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that ∼ 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion. Upon packaging, both 5-kbp and  50-kbp DNAs produced comparable fluorescence resonance energy transfer (FRET) between Cy5 and Cy5.5 double-dye terminated DNAs. Single-molecule FRET (sm-FRET) and photobleaching analysis shows that FRET is intramolecular rather than intermolecular upon packaging of most procapsids and demonstrates that single-molecule detection allows mechanistic analysis of packaging in vitro. FRET-FCS and sm-FRET measurements are comparable and show that both the 5-kbp and the  50-kbp packaged DNA ends are held within 8-9 nm of each other, within the dimensions of the long axis of the procapsid portal. The calculated distribution of FRET distances is relatively narrow for both FRET-FCS and sm-FRET, suggesting that the two packaged DNA ends are held at the same fixed distance relative to each other in most capsids. Because one DNA end is known to be positioned for ejection through the portal, it can be inferred that both DNAs ends are held in proximity to the portal entrance and ejection channel. The analysis suggests that a DNA loop, rather than a DNA end, is translocated by the packaging motor to fill the procapsid.  相似文献   

12.
BALB/c mouse sarcoma virus (BALB-MSV) is a spontaneously occurring transforming retrovirus of mouse origin. The integrated form of the viral genome was cloned from the DNA of a BALB-MSV-transformed nonproducer NRK cell line in the Charon 9 strain of bacteriophage lambda. In transfection assays, the 19-kilobase-pair (kbp) recombinant DNA clone transformed NIH/3T3 mouse cells with an efficiency of 3 X 10(4) focus-forming units per pmol. Such transformants possessed typical BALB-MSV morphology and released BALB-MSV after helper virus superinfection. A 6.8-kbp DNA segment within the 19-kbp DNA possessed restriction enzyme sites identical to those of the linear BALB-MSV genome. Long terminal repeats of approximately 0.6 kbp were localized at either end of the viral genome by the presence of a repeated constellation of restriction sites and by hybridization of segments containing these sites with nick-translated Moloney murine leukemia virus long terminal repeat DNA. A continuous segment of at least 0.6 and no more than 0.9 kbp of helper virus-unrelated sequences was localized toward the 3' end of the viral genome in relation to viral RNA. A probe composed of these sequences detected six EcoRI-generated DNA bands in normal mouse cell DNA as well as a smaller number of bands in rat and human DNAs. These studies demonstrate that BALB-MSV, like previously characterized avian and mammalian transforming retroviruses, arose by recombination of a type C helper virus with a well-conserved cellular gene.  相似文献   

13.
14.
The unenveloped, stiff-rod-shaped, linear double-stranded DNA viruses SIRV1 and SIRV2 from Icelandic Sulfolobus isolates form a novel virus family, the Rudiviridae. The sizes of the genomes are 32. 3 kbp for SIRV1 and 35.8 kbp for SIRV2. The virions consist of a tube-like superhelix formed by the DNA and a single basic 15.8-kD DNA-binding protein. The tube carries a plug and three tail fibers at each end. One turn of the DNA-protein superhelix measures 4.3 nm and comprises 16.5 turns of B DNA. The linear DNA molecules appear to have covalently closed hairpin ends. The viruses are not lytic and are present in their original hosts in carrier states. Both viruses are quite stable in these carrier states. In several laboratory hosts SIRV2 was invariant, but SIRV1 formed many different variants that completely replaced the wild-type virus. Some of these variants were still variable, whereas others were stable. Up to 10% nucleotide substitution was found between corresponding genome fragments of three variants. Some variants showed deletions. Wild-type SIRV1, but not SIRV2, induces an SOS-like response in Sulfolobus. We propose that wild-type SIRV1 is unable to propagate in some hosts but surmounts this host range barrier by inducing a host response effecting extensive variation of the viral genome.  相似文献   

15.
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA.  相似文献   

16.
Extrachromosomal DNA in the form of covalently closed circular DNA molecules was isolated from killer and nonkiller xenosomes, bacterial endosymbionts of the marine protozoan Parauronema acutum. Restriction endonuclease digests of these molecules derived from 12 isolates revealed consistent, readily identifiable, differences in the pattern of fragments of the killer as compared with those present in the nonkiller. Transformation of the nonkiller to killer by infection is also accompanied by a change from the nonkiller to killer pattern. Based on analysis of fragments resulting from restriction endonuclease digests, two circular duplex DNA molecules, each 63 kilobase pairs (kbp) in length, were identified in the 263-20 nonkiller stock and mapped. The maps revealed that each possesses a single BamHI site and multiple BglI, BstIIE, PstI, and SalI sites. A distinguishing feature of these maps is that the two molecules share a region about 17 kbp in length in which multiple restriction sites are in register with each other. Allowing for a 0.5-kbp insertion or deletion and the introduction or removal of only a few restriction sites, an additional stretch extending approximately 31 kbp beyond this sequence could also be considered to be homologous. The structure of the killer plasmid appears to be more complex, and we have been unable, as yet, to construct physical maps for this DNA. We postulate that the killer plasmid DNA is composed of three, perhaps four, circular 63-kbp duplexes, at least one which contains a single BamHI site and another which contains two BamHI sites. The remaining molecules may represent copies of either or both of the other two, modified to contain additional restriction sites. Transformation from the nonkiller to the killer is visualized as the insertion of restriction sites at various points along parent nonkiller plasmid DNA molecules. The mechanism by which these sites are introduced is unknown.  相似文献   

17.
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.  相似文献   

18.
Lactobacillus salivarius CECT 5713, isolated from human milk, has immunomodulatory, anti-inflammatory and antiinfectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, the relationships between several genetic features of L. salivarius CECT 5713 and the corresponding phenotypes were evaluated. Although it contains a plasmid-encoded bacteriocin cluster, no bacteriocin biosynthesis was observed, possibly due to a 4-bp deletion at the beginning of the histidine kinase determinant abpK. The genome of L. salivarius CECT 5713 harbours two apparently complete prophages of 39.6 and 48?kbp. Upon induction, the 48-kbp prophage became liberated from the bacterial genome, but no DNA replication took place, which resulted in lysis of the cultures but not in phage progeny generation. The strain was sensitive to most antibiotics tested and no transmissible genes potentially involved in antibiotic resistance were detected. Finally, the genome of L. salivarius CECT 5713 contained four ORFs potentially involved in human molecular mimetism. Among them, protein 1230 was considered of particular relevance because of its similarity with dendritic cell-related proteins. Subsequently, in vitro assays revealed the ability of L. salivarius CECT 5713 to stimulate the maturation of immature dendritic cells and to inhibit the in vitro infectivity of HIV-1.  相似文献   

19.
The expression of Mycoplasma pulmonis antigen in Escherichia coli was investigated by cloning genomic DNA derived from M. pulmonis m 53, and the DNA fragment participating in antigen expression was identified. When the DNA library of M. pulmonis was screened by colony immunoassay using anti-M. pulmonis serum, 10 recombinant clones expressing seroreactive antigens were obtained. The recombinant plasmids isolated from these clones included 3.7-6.5 kilobase pair (kbp) DNA inserts, while all clones contained a common 2.3-kbp DNA fragment. Subcloning of initial DNA inserts showed that the common 2.3-kbp fragment is essential for antigen expression. Moreover, antiserum against the recombinant antigen generated from the 2.3-kbp DNA fragment recognized a native M. pulmonis antigen. The reactivity of this antiserum was absorbed specifically with M. pulmonis. These results suggest that the cloned 2.3-kbp DNA fragment codes an antigen specific to M. pulmonis.  相似文献   

20.
Friend murine leukemia virus (G-MuLV) is a helper-independent, type C retrovirus isolated from stocks of Friend virus complex (spleen focus-forming virus plus MuLV). In cell culture, F-MuLV has an ecotropic and NB-tropic host range and causes XC cells to fuse. When injected into newborn NIH Swiss mice, F-MuLV produces hepatosplenomegaly, severe anemia, and numerous circulating hematopoietic precursors in the peripheral blood with normal thymus and lymph nodes after 3 to 6 weeks. Recently, we molecularly cloned an 8.5-kilobase pair (kbp) form of F-MuLV DNA from which we could recover the pathogenic F-MuLV virus by DNA transfection of NIH 3T3 cells. From this molecularly cloned F-MuLV DNA, we have now subcloned in pBR322 a 4.1-kbp HindIII fragment which contains in continuity 3.0 kbp from the 3' terminus (env and c region), 0.6 kbp of the terminal repeat sequences, and 0.5 kbp from the 5'terminus of the viral RNA (genome). NIH 3T3 fibroblasts were transfected with this DNA fragment an then infected with the wild mouse amphotropic retrovirus (cl 1504-A). In cell culture, 1504-A is a helper-independent type C virus which has an N-tropic host range and does not cause fusion of XC cells. When injected into newborn NIH Swiss mice, 1504-A does not produce splenomegaly or thymic enlargement in mice held for up to 8 months. The transfection with the F-MuLV fragment and the infection with 1504-A consistently yielded virus preparations that were XC positive. From such virus stocks we were able to isolate both helper-independent and replication-defective XC-positive viruses. The helper-independent virus was shown to be a recombinant virus since it contains a gp70 molecule derived at least in part from F-MuLV and a specific gag precursor derived from 1504-A as determined by radioactive immune precipitation assays. When injected into newborn Swiss mice, the recombinant helper-independent virus caused hepatosplenomegaly in approximately 50% of the mice in 6 to 8 weeks. The histology of the diseased splenic tissue was indistinguishable from that seen in the disease caused by the whole F-MuLV. The replication-defective virus could be pseudotyped with new 1504-A virus, and this viral complex also caused the F-MuLV disease picture when the complex was injected into newborn Swiss mice. We conclude that the genetic information responsible for the pathogenicity of F-MuLV is contained within the 4.1-kbp DNA fragment, which includes env gene sequences, the terminal repeat sequences, and the c region sequences of the F-MuLV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号