首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified the two major isozymes of the L-isoaspartyl/D-aspartyl protein methyltransferase from both human and bovine erythrocytes. These four enzymes all have polypeptide molecular weights of approximately 26,500 and appear to be monomers in solution. Each of these enzymes cross-reacts with antibodies directed against protein carboxyl methyltransferase I from bovine brain. Their structures also appear to be similar when analyzed by dodecyl sulfate gel electrophoresis for the large fragments produced by digestion with Staphylococcus aureus protease V8 or when analyzed by high-performance liquid chromatography (HPLC) for tryptic peptides. The structural relatedness of these enzymes was confirmed by sequence analysis of a total of 433 residues in 32 tryptic fragments of the human erythrocyte isozymes I and II and of the bovine erythrocyte isozyme II. We found sequence identify or probable identity in 111 out of 112 residues when we compared the human isozymes I and II and identities in 127 out of 134 residues when the human and bovine isozymes II were compared. These results suggest that the erythrocyte isozymes from both organisms may have nearly identical structures and confirm the similarities in the function of these methyltransferases that have been previously demonstrated.  相似文献   

2.
Prolonged intake of low levels of aluminum from the drinking water has been found to increase the aluminum content in rat brain homogenates and to reduce the activity of hexokinase and glucose-6-phosphate dehydrogenase (G6PD). To determine the interaction of G6PD with aluminum in the brain, we have recently purified two isozymes of G6PD (isozymes I and II) from human and pig brain. Unlike isozyme I, isozyme II also had 6-phosphogluconate dehydrogenase (6-PGD) activity. We report here that G6PD isozymes I and II from human and pig brain purified to apparent homogeneity are inactivated by aluminum. Aluminum did not affect the 6-PGD activity of isozyme II. The aluminum-inactivated enzyme contained 1 mol of aluminum/mol of enzyme subunit. The protein-bound metal ion was not dissociated by exhaustive dialysis at 4 degrees C against 10 mM Tris-HCl (pH 7.0) containing 0.2 mM EDTA. Preincubation of aluminum with citrate, NADP+, EDTA, NaF, ATP, and apotransferrin protected the G6PD isozymes against aluminum inactivation. However, when the G6PD isozymes were completely inactivated by aluminum, only citrate, NaF, and apotransferrin restored the enzyme activity. The dissociation constants for the enzyme-aluminum complex of the isozymes varied from 2 to 4 microM, as measured by using NaF, a known chelator for aluminum. Inhibition of G6PD by low levels of aluminum further strengthens the suggested role of aluminum toxicity in the energy metabolism of the brain.  相似文献   

3.
The properties of the isozymes of pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) found in unfertilized frog egg have been compared to those found in adult tissues of Rana pipiens. Chromatographic, kinetic, and electrophoretic data indicate that, of the five electrophoretic forms found in egg, the isozyme with the least anodic mobility (isozyme I) is the same molecular species as the only isozyme found in heart, and the egg isozyme with the greatest anodic mobility (isozyme V) is identical to the major isozyme found in liver.The activity of egg isozyme I was markedly inhibited by the antibody to the skeletal muscle enzyme, which has been shown previously to cross-react with the cardiac enzyme, but was unaffected by the antibody to liver isozyme V; the opposite effects were observed with egg isozyme V. The antibody to the skeletal muscle enzyme inhibited egg isozymes II > III > IV whereas the antibody to the liver enzyme gave the reverse inhibitory pattern, e.g., isozyme IV > III > II.In vitro dissociation-reassociation of mixtures of isozyme I and V led to the formation of the other three isozymes. Similar experiments performed individually with either egg isozyme III or IV resulted in the production of predominantly isozymes III, II, and I due to the instability of isozyme V during the hybridization procedure.The above results indicate that isozymes I and V are tetramers of the respective parental subunits and that isozymes II, III, and IV are hybrid molecules with subunit assignments of (I3V1), I2V2), and (I1V3), respectively.  相似文献   

4.
Four major ALDH isozymes have been identified in human tissues using starch gel electrophoresis and isoelectric focusing. The isozyme bands have been termed as ALDH I, II, III and IV according to their decreasing electrophoretic migration and increasing isoelectric point. The isozymes have been partially purified via preparative isoelectric focusing. Kinetic characteristics of ALDH I and II were found to be quite similar to ALDH enzyme 2 and enzyme 1 described earlier by Greenfield and Pietruszko (Biochem Biophys Acta, 483 35–45 1977). ALDH III and IV showed a very high Km for propionaldehyde (1.0–1.5 mM at pH 9.5) and were not inhibited by disulfiram at pH 9.5. A variant phenotype of ALDH which lacked in isozyme I was detected in various tissues from Japanese individuals. Comparative kinetic properties of normal and variant enzyme are given.  相似文献   

5.
We have isolated two cDNA clones that correspond to the mRNAs for two isozymes of the human L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). The DNA sequence of one of these encodes the amino acid sequence of the C-terminal half of the human erythrocyte isozyme I. The other cDNA clone includes the complete coding region of the more acidic isozyme II. With the exception of potential polymorphic sites at amino acid residues 119 and 205, the deduced amino acid sequences differ only at the C-terminus, where the -RWK sequence of isozyme I is replaced by a -RDEL sequence in isozyme II. The latter sequence is identical to a mammalian endoplasmic reticulum retention signal. With the previous evidence for only a single gene for the L-isoaspartyl/D-aspartyl methyltransferase in humans, and with evidence for consensus sites for alternative splicing in corresponding mouse genomic clones, we suggest that alternative splicing reactions can generate the major isozymes previously identified in human erythrocytes. The presence of alternative splicing leads us to predict the existence of a third isozyme with a -R C-terminus. The calculated isoelectric point of this third form is similar to that of a previously detected but uncharacterized minor methyltransferase activity.  相似文献   

6.
Cyclic AMP-dependent protein kinase, which plays a major role in metabolic and genetic regulation, consists of two classes of isozymes denoted as type I and type II. The type II isozyme, moreover, consists of two subclasses denoted as neural and non-neural based upon immunochemical differences between the enzyme isolated from bovine brain and heart, respectively. Whereas the catalytic (C) subunits of these three isozymes are quite similar, all three isozymes differ with respect to their regulatory (R) subunits. In the present report, we have compared the sensitivities to cyclic AMP of the type I and type II isozymes in several tissues from a single species (rat). The sensitivities of the three isozymes to cyclic AMP were type I much greater than non-neural type II greater than neural type II. We suggest that the differences in sensitivity to cyclic AMP of isozymes present in the same cell provides the cell with a dynamic range of responses to the widely varying alterations in cellular cyclic AMP levels produced by regulatory first messengers.  相似文献   

7.
The role of the type I and type II protein kinase A isozymes in the regulation of human T lymphocyte immune effector functions has not been ascertained. To approach this question, we first characterized the distribution and enzyme activities of the type I and type II protein kinase A (PKA) isozymes in normal, human T lymphocytes. T cells possess both type I and type II isozymes with an activity ratio of 5.0:1 +/- 0.71 (mean +/- SD). The type I isozyme associates predominately with the plasma membrane whereas the type II isozyme localizes primarily to the cytosol. Analyses of isozyme activities demonstrated that T cells from approximately one-third of 16 healthy donors exhibited significantly higher type II isozyme activities (higher type II, type IIH) than the remaining donors (lower type II, type IIL) (mean = 605 +/- 75 pmol.min-1.mg protein-1, P less than 0.001). Scatchard analyses of [3H]cAMP binding in the cytosolic fraction demonstrated similar Kd values (type IIH, 1.1 x 10(-7) M; type IIL, 9.0 x 10(-8) M); however, the Bmax (maximal binding) of the type IIH was 400 fmol/mg protein compared to the Bmax of the type IIL of 126 fmol/mg protein. Scatchard analysis of [3H]cAMP binding to the type I isozyme associated with membrane fragments had a Kd of 5.6 x 10(-8) M and a Bmax of 283 fmol/mg protein. Eadie-Hofstee plots of type IIH and type IIL gave a Km and Vmax of 2.3 mg/ml and 1.5 nmol.mg-1.min-1, and 2.1 mg/ml and 1.6 nmol.mg-1.min-1, respectively. The 3.2-fold higher maximal binding of the type II isozyme in one-third of healthy donors may reflect a greater amount of isozyme protein. The compartmentalization of type I PKA isozyme to the plasma membrane and type II PKA isozyme to the cytosol may serve to localize the isozymes to their respective substrates in T lymphocytes.  相似文献   

8.
Aldehyde dehydrogenase (EC 1.2.1.3) has been purified from human brain; this constitutes the first purification to homogeneity from the brain of any mammalian species. Of the three isozymes purified two are mitochondrial in origin (Peak I and Peak II) and one is cytoplasmic (Peak III). By comparison of properties, the cytoplasmic Peak III enzyme could be identified as the same as the liver cytoplasmic E1 isozyme (N.J. Greenfield and R. Pietruszko (1977) Biochim. Biophys. Acta 483, 35-45). The Peak I and Peak II enzymes resemble the liver mitochondrial E2 isozyme, but both have properties that differ from those of the liver enzyme. The Peak I enzyme is extremely sensitive to disulfiram while the Peak II enzyme is totally insensitive; liver mitochondrial E2 isozyme is partially sensitive to disulfiram. The specific activity is 0.3 mumol/mg/min for the Peak I and 3.0 mumol/mg/min for the Peak II enzyme; the specific activity of the liver mitochondrial E2 isozyme is 1.6 mumol/min/mg under the same conditions. The Peak I enzyme is also inhibited by acetaldehyde at low concentrations, while the Peak II enzyme and the liver mitochondrial E2 isozyme are not inhibited under the same conditions. The precise relationship of brain Peak I and II enzymes to the liver E2 isozyme is not clear but it cannot be excluded at the present time that the two brain mitochondrial enzymes are brain specific.  相似文献   

9.
We have examined the hypothesis that the human erythrocyte isozyme of pyruvate kinase (EC 2.7.1.40) is a hybrid of the two isozymes present in liver. Rabbit antiserum against purified human erythrocyte pyruvate kinase inactivates the erythrocyte isozyme and the major liver isozyme from human tissue but does not inactivate the minor liver isozyme. The electrophoretic mobilities of the erythrocyte and major liver isozymes are altered by anti-erythrocyte enzyme antibody while the mobility of the minor liver isozyme is unaffected. Gel diffusion analysis indicates cross-reactivity between the erythrocyte and major liver isozyme but no cross-reactivity with the minor liver isozyme. The hybrid hypothesis would predict cross-reactivity including changes in activity and mobility of all isozymes and we conclude, therefore that the hypothesis is incorrect.  相似文献   

10.
In addition to sulfonamides, metal complexing anions represent the second class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the mitochondrial isozyme CA V (of murine and human origin) with anions is reported here. Inhibition data of the cytosolic isozymes CA I and CA II as well as the membrane-bound isozyme CA IV with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, sulfamate, and sulfamidate and so on, are also provided for comparison. Isozyme V has an inhibition profile by anions completely different to those of CA I and IV, but similar to that of hCA II, which may have interesting physiological consequences. Similarly to hCA II, the mitochondrial isozymes show micro-nanomolar affinity for sulfonamides such as sulfanilamide and acetazolamide.  相似文献   

11.
Lactate dehydrogenase [L-lactate: NAD oxidoreductase, EC 1.1.1.27] was isolated from sweet potato root tissues. Two species of the enzyme (isozymes I and II) were separated by DE-52 cellulose column chromatography from healthy, cut, and black-rot diseased tissues. Isozymes I and II were purified from healthy and diseased tissues, respectively. Reduction of pyruvate by NADH with either isozyme I or II was inhibited by pyruvate at high concentrations, by NAD+ and by several mononucleotides. Isozyme I was inhibited by a lower concentration of adenine nucleotide than isozyme II, and Km for pyruvate was increased markedly at acidic pH in the case of isozyme I, but only slightly in the case of isozyme II. The molecular weights of both isozymes were determined to be 150,000 and they were found to be charge isomers by polyacrylamide gel electrophoresis. The enzyme activity increased in response to infection by black-rot fungus but decreased in response to cutting.  相似文献   

12.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

13.
We have compared Southern blots of rat hepatoma DNA probed with Types I, II and III hexokinase cDNAs isolated from normal rat tissues. Hybridization patterns show several fragments recognized by both the Type I and II clones while no resemblance is observed between the Type III probe and the other two isozymes. It therefore appears that the Type I-like and Type II-like hepatoma isozymes are coded for by similar yet separate genes, while a dissimilar third gene codes for the Type III-like isozyme. In addition, a loss of heterozygosity was detected at the Type III locus in the AS-30D hepatoma when compared to normal tissue. As only the Type II-like isozyme is highly expressed in highly glycolytic tumors, these data have implications for differential gene regulation between the tumor isozymes.  相似文献   

14.
We have previously identified three types of protein kinase C (a Ca2+-activated phospholipid-dependent kinase) isozymes, designated types I, II, and III, from rat brain (Huang, K.-P., Nakabayashi, H., and Huang, F. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8535-8539). These enzymes are different in their elution profile from hydroxylapatite column, sites of autophosphorylation, and immunoreactivity toward two types of monoclonal antibodies. Now we describe the purification of similar protein kinase C isozymes from monkey brain and their regional distribution in the brain. These primate enzymes all have the same molecular weight of 82,000, and each type of isozyme cross-reacts with the purified monospecific antibodies against its corresponding rat brain counterpart isozyme. These purified antibodies were used to quantify the relative contents of three types of protein kinase C isozymes in various regions of rat and monkey brains. In rat brain, cerebellum contained a high level of the type I isozyme; cerebral cortex, thalamus, and corpus callosum were high in the type II enzyme; and olfactory bulb was highest in the type III enzyme. In monkey brain, the type I isozyme was found to be enriched in cerebellum, hippocampus, and amygdala; the type II enzyme was at very high level in caudate, frontal and motor cerebral cortices, substantia nigra, and thalamus; and the type III enzyme was at the highest level in olfactory bulb. These results indicate that protein kinase C isozymes are differentially distributed in various regions of rat and monkey brains and suggest a unique role for each isozyme in controlling the different neuronal functions in the brain.  相似文献   

15.
Rice leaves and seed embryos contain four isozymes of CuZn-superoxidedismutase (SOD) and two isozymes of Mn-SOD. CuZn-SOD I is amajor enzyme in leaves, but not in embryos or etiolated seedlings.CuZn-SODs II,III and IV were found in the embryos but were alsofound as minor isozymes in leaves. CuZn-SODs I, II and IV were purified to homogeneity from riceleaves. CuZn-SODs I and II had similar properties with respectto molecular weight, dimeric structure, absorption spectrumand metal content, but their amino acid compositions differedfrom each other. The absorption spectrum of CuZn-SOD IV wassimilar to that of isozymes I and II, but this enzyme was amonomer with a molecular mass of 1.7 kDa. Antibody against CuZn-SODI from rice did not cross-react with isozymes II and IV. Antibodiesagainst CuZn-SOD from spinach leaves cross-reacted with isozymeI but not with isozymes II, III and IV. By contrast, the antibodiesagaist CuZn-SOD from spinach seeds cross-reacted with isozymesII, III and IV but not with isozyme I. Thus, the isozyme thatis expressed mainly in leaves (CuZn-SOD I) and the isozymesexpressed mainly in non-photosynthetic tissues (CuZn-SODs II,III, IV) are immunologically distinct. (Received October 7, 1988; Accepted January 27, 1989)  相似文献   

16.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

17.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities.  相似文献   

18.
Cationic ruthenium(II) pentamethylcyclopentadienyl benzenesulfonamide sandwich complexes have been synthesized and screened for enzymatic inhibition of the physiologically dominant carbonic anhydrase (CA) isozymes: human CA I and II, mitochondrial isozymes VA and VB, and the cancer-associated isozyme IX. The complexes demonstrated weaker binding to CAs compared with typical aromatic sulfonamides, inhibiting the enzyme at high nanomolar concentrations. An in vitro cytotoxic evaluation of the complexes was also undertaken against a range of tumorigenic cell lines and a healthy human cell line. Complexes inhibited the growth of cancerous cells at low micromolar concentrations while expressing lower levels of toxicity towards the normal human cell line. Factors influencing the synthesis, cytotoxicity, and enzyme affinity for this series of organometallic complexes are discussed.  相似文献   

19.
The amino acid sequences of high-redox-potential ferredoxin (HiPIP) isozymes from Ectothiorhodospira halophila have been determined. These are: isozyme I, EPRAEDGHAHDYVNEAADPSHGRYQEGQLCENCAFWGEAVQDGWGRCTHPDFDEVLVKAEGWCSVYAPA S, and isozyme II, GLPDGVEDLPKAEDDHAHDYVNDAADTDHARFQEGQLCENCQFWVDYVNGWGYCQHPDFTDVLVRGEGW CSVYAPA. Isozyme II is the major form of HiPIP produced by the bacterium (65-80%) and is the most acidic of the known HiPIPs. The two isozymes are 72% identical to one another and require only a single residue deletion for alignment. Comparison of these HiPIPs with seven previously determined sequences revealed only 27% average identity. Both E. halophila HiPIP isozymes are likely to be functional since their sequences are equally distant from those of other species. The E. halophila HiPIP sequences show that H-bonding patterns recognized in Chromatium vinosum HiPIP are likely to be conserved and therefore cannot explain the unusually low redox potentials which have been reported.  相似文献   

20.
Differential down-regulation of protein kinase C isozymes   总被引:23,自引:0,他引:23  
Types I, II, and III protein kinase C have been shown to be products of, respectively, gamma, beta, and alpha genes of this enzyme family (Huang, F. L., Yoshida, Y., Nakabayashi, H., Knopf, J. L., Young, W. S., III, and Huang, K.-P. (1987) Biochem. Biophys. Res. Commun. 149, 946-952). Incubation of the highly purified rat brain protein kinase C isozymes with trypsin (kinase/trypsin (w/w) = 100) under identical conditions results in a preferential degradation of types I and II enzymes, whereas the type III enzyme was relatively resistant to tryptic proteolysis. Degradation of the type III enzyme by trypsin could be facilitated with the addition of Ca2+, phosphatidylserine, and dioleoylglycerol; none of these components alone was effective. Limited proteolysis of the three protein kinase C isozymes generated distinctive fragments for each isozyme, indicating that each isozyme has different trypsin-sensitive sites. Tryptic digestion of the type III protein kinase C was used as a model to determine the effects of various modulators on protein kinase C degradation. While Ca2+ and phosphatidylserine together were sufficient to convert the type III protein kinase C from a trypsin-insensitive to a -sensitive form, addition of dioleoylglycerol greatly reduced the Ca2+ requirement for such a conversion. Among the various phospholipids tested, in the presence of either dioleoylglycerol or phorbol ester, phosphatidylserine, cardiolipin, and phosphatidic acid were the most effective, and phosphatidylcholine and phosphatidylethanolamine were the least effective in supporting the digestion of type III protein kinase. Other acidic phospholipids, such as lysophosphatidylserine and phosphatidylinositol, were also effective in supporting the degradation in the presence of phorbol ester but not in the presence of dioleoylglycerol. The relevance of these proteolytic reactions to physiological responses was assessed with phorbol ester on rat basophilic leukemia RBL-2H3 cells, which contained both types II and III protein kinase C. Immunoblot analysis with the isozyme-specific antibodies revealed that phorbol ester induced a faster degradation of type II than that of type III isozyme in these cells. The results demonstrate that the various protein kinase C isozymes have different susceptibilities to proteolysis in vitro, when tested with trypsin, as well as to endogenous proteases in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号