首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear transport of the chromatin remodeling protein nucleoplasmin and chromatin building histones is mediated by importins. Nucleoplasmin (NP) contains a classical bipartite nuclear localization signal (NLS) that is recognized by the importin α/β heterodimer, while histones present multiple NLS-like motifs that are recognized by importin β family members for nuclear targeting. To explore the possibility of a cotransport of histones and their chaperone NP to the nucleus, we have analyzed the assembly of complexes of NP/histones with importins by means of fluorescence anisotropy, centrifugation in sucrose gradients, and isothermal titration calorimetry. Data show that importin α ΔIBB (a truncated form of importin α lacking the autoinhibitory N-terminal domain) and histones (linker, H5, and nucleosomal core, H2AH2B) can simultaneously bind to NP. Analysis of the binding energetics reveals an enthalpy-driven formation of high affinity ternary, NP/Δα/H5 and NP/Δα/H2AH2B, complexes. We find that different amount of importin α molecules can be loaded on NP/histone complexes dependent on the histone type, linker or core, and the amount of bound histones. We further demonstrate that NP/H5 complexes can also incorporate importin α/β, thus forming quaternary NP/histones/α/β complexes that might represent a putative coimport pathway for nuclear import of histones and their chaperone protein NP, enhancing the histone import efficiency.  相似文献   

2.
Histones are the major structural proteins in eukaryotic chromosomes. This group of small very basic proteins consists of the H1 linker histones and the core histones H2A, H2B, H3 and H4. Despite their small size, the nuclear import of histones occurs by an active transport mechanism and not simply by diffusion. Histones contain several nuclear localisation signals (NLS) that can be subdivided into two different types of signal structures. We have previously shown that H1 histones are transported by a heterodimeric import receptor complex consisting of importin beta and importin 7, and we now describe the receptors required for the import of the core histones. Competition experiments using the in vitro transport assay indicate that the import pathway of the core histones differs from that of the linker histones and of nuclear proteins with classical NLS. In vitro binding assays show that each of the import receptors importin beta, importin 5, importin 7 and transportin, has the capacity to bind to any of the four core histones. Reconstitution experiments with recombinant factors indicate that each of these factors can independently serve as an import receptor for each of the core histones.  相似文献   

3.
4.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

5.
6.
CD44 is a facultative cell surface proteoglycan that serves as the principal cell surface receptor for hyaluronan (HA). Studies have shown that in addition to participating in numerous signaling pathways, CD44 becomes internalized upon engagement by ligand and that a portion of its intracellular domain can translocate to the nucleus where it is believed to play a functional role in cell proliferation and survival. However, the mechanisms whereby fragments of CD44 enter the nucleus have not been elucidated. Here we show that CD44 interacts with two import receptors of the importin β superfamily, importin β itself and transportin. Inhibition of importin β-dependent transport failed to block CD44 accumulation in the nucleus. By contrast, inhibition of the transportin-dependent pathway abrogated CD44 import. Mutagenesis of the intracellular domain of CD44 revealed that the 20 membrane-proximal residues contain sequences required for transportin-mediated nuclear transport. Our observations provide evidence that CD44 interacts with importin family members and identify the transportin-dependent pathway as the mechanism whereby full-length CD44 enters the nucleus.  相似文献   

7.
Although many components and reaction steps necessary for bidirectional transport across the nuclear envelope (NE) have been characterized, the mechanism and control of cargo migration through nuclear pore complexes (NPCs) remain poorly understood. Single-molecule fluorescence microscopy was used to track the movement of cargos before, during, and after their interactions with NPCs. At low importin β concentrations, about half of the signal-dependent cargos that interacted with an NPC were translocated across the NE, indicating a nuclear import efficiency of ~50%. At high importin β concentrations, the import efficiency increased to ~80% and the transit speed increased approximately sevenfold. The transit speed and import efficiency of a signal-independent cargo was also increased by high importin β concentrations. These results demonstrate that maximum nucleocytoplasmic transport velocities can be modulated by at least ~10-fold by the importin β concentration and therefore suggest a potential mechanism for regulating the speed of cargo traffic across the NE.  相似文献   

8.
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.  相似文献   

9.
The importin α:β complex is responsible for the nuclear import of proteins bearing classical nuclear localization signals. In mammals, several importin α subtypes are known to exist that are suggested to have individual functions. Importin α 7 was shown to play a crucial role in early embryonic development in mice. Embryos from importin α 7–depleted females stop at the two-cell stage and show disturbed zygotic genome activation. As there is evidence that individual importin α subtypes possess cargo specificities, we hypothesized that importin α 7 binds a unique set of intracellular proteins. With the use of a collection of in vitro and in vivo binding assays, importin α 7 interaction partners were identified that differed from proteins found to bind to importin α 2 and 3. One of the proteins preferentially binding importin α 7 was the maternal effect protein Brg1. However, Brg1 was localized in oocyte nuclei in importin α 7–deficient embryos, albeit in reduced amounts, suggesting additional modes of nuclear translocation of this factor. An additional SILAC-based screening approach identified Ash2l, Chd3, Mcm3, and Smarcc1, whose nuclear import seems to be disturbed in importin α 7–deficient fibroblasts.The nuclear compartment is spatially separated from the cytoplasm by the nuclear envelope. The nuclear pores, which are embedded in the nuclear membrane, are the gateway for intracellular molecules that must traverse the nuclear envelope to enter or exit the nucleus. Small molecules can pass through the nuclear pores via passive diffusion; molecules weighing more than 40 kDa must be transported actively through the nuclear pore (1). According to the transport direction, carrier proteins that mediate these nuclear trafficking events are called importins or exportins, known collectively as karyopherins. Nuclear trafficking mediated by the importin α:importin β heterodimer is perhaps the best characterized nuclear import pathway. Here, importin α (or karyopherin α) serves as an adaptor molecule that binds cargoes containing classical nuclear localization signals (NLSs)1 in their primary amino acid sequence. Upon cargo binding, importin α binds to importin β (karyopherin β 1), forming a trimeric transport complex that moves through the nuclear pore into the nucleus. In the nucleoplasm, RanGTP binds to importin β, leading to a conformational change in importin β and to the dissociation of the transport complex. The cargo is released to the nucleoplasm and can fulfill its function, whereas importins α and β are recycled back to the cytoplasm, where they can perform the next round of import (for reviews, see Refs. 24).There is only one importin α and one importin β protein present in yeast. However, multiple importin α isoforms, each transcribed from a different gene, are found in higher eukaryotes. Three importin α subtypes have been identified in Caenorhabditis elegans and Drosophila melanogaster, and up to seven importin α isoforms have been identified in mammals (57). These importin α isoforms can be grouped into three subfamilies based on sequence similarity (8). Little is known as to why multiple importin α isoforms exist in higher eukaryotes, but there is evidence that each importin α subtype has a tissue-specific expression pattern and distinct cargoes containing classical NLSs (912).We have recently shown that importin α 7 is required for embryonic development in mice (13). Oocytes from importin α 7 null females ovulate but produce embryos that fail to develop beyond the two-cell stage. To elucidate the molecular mechanisms behind this phenotype, we were especially interested in the identification of importin α 7 binding partners. Therefore, the aim of this study was to combine in vivo and in vitro screens to identify an importin α 7 subtype-specific cargo set. Through GST pull-down and co-immunoprecipitation experiments, we were able to identify a unique set of importin α 7 interaction partners that are involved in RNA processing, chromosome organization, and chromatin modification. Among them we found Brahma-related gene 1 (Brg1), also known as smarca4 or Baf190a, a known maternal effect protein required for early development in the mouse (14). An additional approach utilizing stable isotope labeling by amino acids in cell culture (SILAC) was used to further narrow down the list of potential importin α 7 specific cargoes. Hereby, we identified Ash2l, Chd3, Mcm3, Mcm5, and Smarcc1, whose nuclear levels were clearly decreased in importin α 7–deficient fibroblasts.  相似文献   

10.
The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.  相似文献   

11.
12.
The nuclear import of histones is a prerequisite for the downstream deposition of histones to form chromatin. However, the coordinate regulation of these processes remains poorly understood. Here we demonstrate that Kap114p, the primary karyopherin/importin responsible for the nuclear import of histones H2A and H2B, modulates the deposition of histones H2A and H2B by the histone chaperone Nap1p. We show that a complex comprising Kap114p, histones H2A and H2B, and Nap1p is present in the nucleus and that the presence of this complex is specifically promoted by Nap1p. This places Kap114p in a position to modulate Nap1p function, and we demonstrate by the use of two different assay systems that Kap114p inhibits Nap1p-mediated chromatin assembly. The inhibition of H2A and H2B deposition by Kap114p results in the concomitant inhibition of RCC1 loading onto chromatin. Biochemical evidence suggests that the mechanism by which Kap114p modulates histone deposition primarily involves direct histone binding, while the interaction between Kap114p and Nap1p plays a secondary role. Furthermore, we found that the inhibition of histone deposition by Kap114p is partially reversed by RanGTP. Our results indicate a novel mechanism by which cells can regulate histone deposition and establish a coordinate link between histone nuclear import and chromatin assembly.  相似文献   

13.
The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin α/importin α, which acts as the NLS receptor, and karyopherin β1/importin β, which binds karyopherin α and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin β1, termed karyopherin β2 or transportin, and does not require a karyopherin α-like adapter protein. A yeast homolog of karyopherin β2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin β1, but not the Kap104p homolog karyopherin β2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin α. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.  相似文献   

14.
Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, the Saccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei of cse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.  相似文献   

15.
Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.  相似文献   

16.
Background: Proteins generally enter or exit the nucleus as cargo of one of a small family of import and export receptors. These receptors bear distant homology to importin β, a subunit of the receptor for proteins with classical nuclear localisation sequences (NLSs). To understand the mechanism of nuclear transport, the next question involves identifying the nuclear pore proteins that interact with the different transport receptors as they dock at the pore and translocate through it.Results: Two pathways of nuclear import were found to intersect at a single nucleoporin, Nup153, localized on the intranuclear side of the nuclear pore. Nup153 contains separate binding sites for importin α/β, which mediates classical NLS import, and for transportin, which mediates import of different nuclear proteins. Strikingly, a Nup153 fragment containing the importin β binding site acted as a dominant-negative inhibitor of NLS import, with no effect on transportin-mediated import. Conversely, a Nup153 fragment containing the transportin binding site acted as a strong dominant-negative inhibitor of transportin import, with no effect on classical NLS import. The interaction of transportin with Nup153 could be disrupted by a non-hydrolyzable form of GTP or by a GTPase-deficient mutant of Ran, and was not observed if transportin carried cargo. Neither Nup153 fragment affected binding of the export receptor Crm1 at the nuclear rim.Conclusions: Two nuclear import pathways, mediated by importin β and transportin, converge on a single nucleoporin, Nup153. Dominant-negative fragments of Nup153 can now be used to distinguish different nuclear import pathways and, potentially, to dissect nuclear export.  相似文献   

17.
A 97-kD component of nuclear pore-targeting complex (the β-subunit of nuclear pore–targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the α-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the β-subunit. The present study describes an examination of the behavior of the β-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected β-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the β-subunit requires neither Ran- nor α-subunit–binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the β-subunit. In the digitonin-permeabilized cell-free import assay, the β-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the β-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry α-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the β-subunit undergoes a translocation reaction together with the α-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.  相似文献   

18.
Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.  相似文献   

19.
Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1 interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin β/α1,3,7 whereas hMSH2 specifically recognizes importin β/α3. Taken together, we infer that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity.  相似文献   

20.
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (−β, −7, −β/7, −13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号