首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipophilin, a hydrophobic protein purified from the proteolipid of normal human brain myelin, was recombined with phosphatidylcholine by solubilization of the lipid and protein in 2-chloro-ethanol followed by dialysis against buffer. This method resulted in homogeneous incorporation of the protein into lipid vesicles as judged by sedimentation on a sucrose gradient and freeze fracture electron microscopy. The lipid-protein vesicles were single layered, 1000–2000 Å in diameter and the freeze fracture faces contained intramembrane particles. The effect of lipophilin on the organization of the lipid was studied by use of spin label probes. Two distinct components were present in the spectrum of fatty acid spin labels in the lipid-protein vesicles. One was immobilized presumably due to the presence of boundary lipid around the protein and the second component was indicative of aniostropic motion similar to the spectrum in phosphatidylcholine vesicles and probably due to a lamellar phase but with a slightly greater order parameter. Lipophilin was found to increase the order parameter linearly with increasing concentration of protein incorporated into the vesicles. However, the phase transition temperature as measured from the 2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPO) solubility parameter was unchanged.  相似文献   

2.
J M Boggs  M A Moscarello 《Biochemistry》1978,17(26):5734-5739
Lipophilin, a hydrophobic protein fraction, purified and delipidated from the proteolipid of human myelin, possesses a layer of boundary lipid surrounding it when incorporated into lipid vesicles. The protein reduces the energy absorbed during the lipid phase transition, indicating that the boundary lipid does not go through the phase transition. The amount of boundary lipid was estimated by plotting the enthalpy of the transition against the protein to lipid mole ratio and extrapolating to deltaH = 0 for a number of synthetic phosphatidylcholines, to determine the ability of fatty acid chains of varying length to interact with the protein. The amount of boundary lipid was found to be similar, 21-25 molecules per molecule of lipophilin, for fatty acid chains of length 14-18 carbons but somewhat less, 16 molecules of lipid per molecule of protein, for a fatty acid chain length of 12 or for one with a trans double bond (18:1tr). No preferential interaction was observed with a lipid containing a particular fatty acid chain length when the protein was incorporated into a mixture of these lipids. These results suggest that the binding of lipids to the boundary layer of other membrane proteins and enzymes may not depend significantly on lipid fatty acid chain length.  相似文献   

3.
Purified F0F1 ATPase from Rhodospirillum rubrum FR1 has been incorporated into lipid vesicles from the partially deuterated phospholipid dimyristoylglycerophosphocholine (DMPC-D54). These proteoliposomes were able to carry out energy transducing reactions. The incorporation of the membrane protein was controlled by freeze fracture electron microscopy. A method for structural research of the membrane protein in its natural environment has been developed by means of neutron small angle scattering. Using the contrast variation technique, the lipid part of the proteoliposomes was matched by adding an appropriate amount of D2O to the solvent. Thus the neutron scattering profile of F0F1 ATPase incorporated into vesicles was separated from the neutron scattering of the liposome. F0F1 ATPase incorporated in a lipid bilayer, as well as the free enzyme, yields a radius of gyration of Rg = 6.0 +/- 0.1 nm which leads to an overall diameter of 15.5 nm. This result suggests that the monomeric form of F0F1 ATPase is incorporated in DMPC-D54 membranes at 20 degrees C.  相似文献   

4.
Mixed vesicles of dimyristoylphosphatidylcholine (DMPC) and a polymerizable lipid containing one diene group per chain are studied by freeze fracture electron microscopy and by the photobleaching (fluorescence recovery after photobleaching) technique. Large thin-walled vesicles of some micron in diameter become more stable after photochemical polymerization. Before polymerization bilayers of the diene lipid exhibit a liquid crystal-to-gel transition at Tg = 31 degrees C. Upon polymerization the transition remains but shifts to a slightly higher temperature (Tg* = 34 degrees C). The transitions in both cases are accompanied by a freezing in of the lateral mobilities. The mixed vesicle exhibits lateral phase separation after polymerization. Before polymerization the two lipids appear miscible at all compositions in the fluid state and at DMPC concentrations at or below 50 mol % in the solid state. After polymerization a two-dimensional solution of the polymer in DMPC is obtained at T greater than Tg*, while lateral phase segregation into DMPC-rich domains and patches of the polymer is observed at T less than Tg*. The domain structure appears identical irrespective of whether polymerization is performed at T greater than Tg or at T less than Tg. A typical value of the diameter of the polymerized lipid domains (approximately 400 A) indicates a rather small aggregation number (N less than 100 monomers). The lateral diffusion coefficient in butadiene-lipid bilayers only decreases from D1 = 3.10(-7) cm2/s to D1 = 8.10(-8) cm2/s (that is by a factor of 4) upon polymerization. This is consistent with the freeze fracture finding of a small aggregation number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The structural effects of in situ production of diacylglycerol by phospholipase C in pure lipid model membranes have been examined by freeze fracture electron microscopy. Phospholipase C-activity induces massive aggregation and fusion of large unilamellar lipid vesicles and leads to the formation of a 'sealed' lipid aggregate; the outer membrane of this aggregate appears to be continuous. In some areas lipid arranges into a honeycomb structure; this structure is probably a precursor of a discontinuous inverted (type II) cubic phase. Similarly, enzyme treatment of multilamellar vesicles leads to extensive membrane fusion and vesiculation. Thus morphological evidence is obtained showing the ability of phospholipase C to induce bilayer destabilization and fusion. It is speculated that phospholipase C-induced membrane fusion involves a type II fusion intermediate induced by diacylglycerol produced locally.  相似文献   

6.
Melittin free of phospholipase A2 was prepared. In the absence of salt this highly pure protein starts to aggregate in solution at a protein concentration of Cp greater than 10(-3) M. In high salt solution (2 M) aggregation starts at Cp greater than 10(-6) M. This was determined from the blue shift of the intrinsic fluorescence of the protein. Reinvestigation of the quenching behaviour clearly shows that self-aggregation cannot be deduced from quenching experiments using nitrate or 2,2,6,6-tetramethylpiperidine-1-oxyl as quencher. The incorporation of melittin into phosphatidylcholine bilayer vesicles was studied by fluorescence quenching and by energy-transfer experiments using 2- and 6-anthroyloxypalmitic acid as acceptor and peptide tryptophan as donor. Incorporation of melittin into small unilamellar vesicles was found to be reduced below the lipid phase transition temperature, Tt, whereas it incorporates and distributes more randomly above Tt. Cooling the temperature below Tt after incubation at T greater than Tt leads to a deeper incorporation of the peptide into the lipid bilayer due to electrostatic interaction between the lipid phosphate groups and the positively charged amino acids. This stabilizing effect is lost above Tt and melittin is extruded to the polar phase. Quenching experiments support this finding. EPR measurements clearly demonstrate that even in the presence of high amounts of melittin up to 10 mol% with respect to the lipid broadening of the phase transition curves was only observed with fatty acid spin labels, where the doxyl group is localized near the bilayer surface. The order degree of the inner part of the bilayer remains almost unchanged even in the presence of high melittin content.  相似文献   

7.
Complement-mediated lysis of reconstituted lipid-myelin basic protein (BP) vesicles and myelin vesicles due to antibody raised against BP and isolated myelin is measured by determination of the amount of a water-soluble spin label, tempocholine chloride, released from the vesicles. The response is shown to be antigen-specific, antibody-dependent, and complement mediated. The relative response to different anti-BP antibody samples is similar to that determined by radioimmunoassay procedures. In contrast to immunoassays with BP in aqueous solution, this method measures immune recognition of the protein in either a synthetic or a natural membranous environment. This is important because this protein has been shown to have a different conformation when bound to lipid bilayers than in aqueous solution and its conformation depends on lipid composition. It is also a more rapid method because no separation of spin label still trapped in the vesicles and that released due to immune lysis is required. In synthetic membranes consisting of sphingomyelin, cholesterol, and an acidic lipid, either phosphatidylglycerol, phosphatidic acid, or phosphatidylserine, the response was greatest when the acidic lipid was phosphatidic acid. The response did not depend significantly on the antigen concentration expressed as molar ratio of BP to sphingomyelin, over the range 0.15:600 to 2:600, although it decreased at molar ratios less than 0.15:600. The antigen density required for immune lysis of vesicles containing this protein antigen is similar to that reported elsewhere for lipid antigens, although the time required for maximal lysis was greater. Both anti-BP and anti-myelin antibodies caused a greater specific complement-mediated response with synthetic vesicles than with myelin vesicles, which may be due to the different lipid and/or protein composition of myelin. Response was also obtained with the myelin vesicles, however, indicating that some determinants of BP can be recognized on the surface of the bilayer in isolated myelin by anti-BP.  相似文献   

8.
Sonicated vesicles of phosphatidylserine and phosphatidylserine/phosphatidylcholine mixtures were recombined with spectrin-actin from human erythrocyte ghosts. Morphological properties and physicochemical characteristics of the recombinates were studied with freeze etch electron microscopy, 31P NMR and differential scanning calorimetry. Sonicated dimyristoyl phosphatidylserine vesicles show a decrease in enthalpy change of the lipid phase transition upon addition of spectrin-actin. These vesicles collapse and fuse, into multilamellar structures in the presence of spectrin-actin, as demonstrated by freeze fracturing and NMR. Spectrin-actin cannot prevent the salt formation between phosphatidylserine and Ca2+, all phosphatidylserine is withdrawn from the lipid phase transition. In contrast a protection against the action of Mg2+ could be observed. Mixed bilayers of dimyristoyl phosphatidylserine/dimyristoyl phosphatidylcholine show phase separations at molar ratios above 1/1 (van Dijck, P.W.M., de Kruijff, B., Verkleij, A.J., van Deenen, L.L.M. and de Gier, J. (1978) Biochim. Biophys. Acta 512, 84--96). These phase spearations can be prevented by spectrin-actin. Ca2+-induced lateral phase separations in cocrystallizing phosphatidylserine/phosphatidylcholine mixtures, can be reduced by spectrin-actin. Formation of the Ca2+-phosphatidylserine salt, occurring in addition to lateral phase separation when mixtures contain more than 30 mol % phosphatidylserine, cannot be prevented by spectrin-actin.  相似文献   

9.
In this work, the detailed studies of electron spin resonance (ESR) and overhauser-enhanced magnetic resonance imaging (OMRI) were carried out for permeable nitroxyl spin probe, MC-PROXYL as a function of agent concentration in liposomal solution. In order to compare the impermeable nature of nitroxyl radical, the study was also carried out only at 2?mM concentration of carboxy-PROXYL. The ESR parameters were estimated using L-band and 300?MHz ESR spectrometers. The line width broadening was measured as a function of agent concentration in liposomal solution. The estimated rotational correlation time is proportional to the agent concentration, which indicates that less mobile nature of nitroxyl spin probe in liposomal solution. The partition parameter and permeability values indicate that the diffusion of nitroxyl spin probe distribution into the lipid phase is maximum at 2?mM concentration of MC-PROXYL. The dynamic nuclear polarization (DNP) parameters such as DNP factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for 2?mM MC-PROXYL in 400?mM liposomal dispersion. The spin lattice relaxation time was shortened in liposomal solution, which leads to the high relaxivity. Reduction in coupling factor is due to less interaction between the electron and nuclear spins, which causes the reduction in enhancement. The leakage factor increases with increasing agent concentration. The increase in DNP enhancement was significant up to 2?mM in liposomal solution. These results paves the way for choosing optimum agent concentration and OMRI scan parameters used in intra and extra membrane water by loading the liposome vesicles with a lipid permeable nitroxyl spin probes in OMRI experiments.  相似文献   

10.
D Marsh  A Watts  P F Knowles 《Biochemistry》1976,15(16):3570-3578
The existence of distinct regions of mismatch in molecular packing at the interfaces of the fluid and ordered domains during the phase transition of dimyristoylphosphatidylcholine vesicles has been demonstrated by measuring the temperature dependence of the permeability to a spin-label cation and comparing this with a statistical mechanical calculation of the fraction of interfacial lipid. The kinetics of uptake and release of the 2,2,6,6-tetramethylpiperidinyl-1-oxycholine (Tempo-choline) spin label by single-bilayer dimyristoylphosphatidylcholine vesicles were measured using electron spin resonance spectroscopy to quantitate the amount of spin label present within the vesicles after removal of the external spin-label by ascorbate at 0 degrees C. Both the uptake and release experiments show that the Tempo-choline permeability peaks to a sharp maximum at the lipid-phase transition, the vesicles being almost impermeable to Tempo-choline below the transition and having a much reduced permeability above. The temperature profile of the permeability is in reasonable quantitative agreement with calculations of the fraction of interfacial boundary lipid from the Zimm and Bragg theory of cooperative transitions, which use independent spin-label measurements of the degree of transition to determine the cooperativity parameter. The relatively high intrinsic permeability of the interfacial regions (P approximately 0.2-1.0 X 10(-8) cm/s) is attributed to the mismatch in molecular packing of the lipid molecules at the ordered-fluid boundaries, which could have important implications not only for permeability in natural membranes (e.g., in transmitter release), but also for the function of membrane-bound enzymes and transport proteins.  相似文献   

11.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

12.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

13.
The secondary structure of a hydrophobic myelin protein (lipophilin), reconstituted with dimyristoylphosphatidylcholine or dimyristoylphosphatidylglycerol, was investigated by Fourier-transform infrared spectroscopy. Protein infrared spectra in the amide I region were analyzed quantitatively using resolution enhancement and band fitting procedures. Lipophilin in a phospholipid environment adopts a highly ordered secondary structure which at room temperature consists predominantly of alpha-helix (approximately 55%) and beta-type conformations (36%). The secondary structure of the protein is not affected by the lipid gel to liquid crystalline phase transition. Heating of the lipid-protein complex above approximately 35 degrees C results in a gradual decrease in alpha-helical content, accompanied by an increase in the amount of beta-structures. Lipophilin dissolved in 2-chloroethanol is, compared to the protein in a lipid environment, richer in the alpha-helical conformation but still contains a sizable amount of beta-structure.  相似文献   

14.
M Ge  J H Freed 《Biophysical journal》1993,65(5):2106-2123
The model of microscopic order and macroscopic disorder was used to stimulate electron spin resonance spectra of spin-labeled lipids, 5-PC, 10-PC, and 16-PC in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) containing gramicidin A' (GA) at temperatures above the gel-to-liquid crystal transition of DPPC. The simulations show that at a lower concentration of GA (i.e., molar ratios of DPPC/GA greater than 3), GA has only a slight effect on the acyl chain dynamics. The rotational diffusion rate around the axis parallel to the long hydrocarbon chain remains unchanged or increases slightly, while the rate around the perpendicular axes decreases slightly. These spectra from DPPC/GA mixtures could only be fit successfully with two or more components consistent with the well-known concept of "boundary lipids," that is, the peptide induces structural inhomogeneity in lipid bilayers. However, the spectra were significantly better fit with additional components that exhibit increased local ordering, implying decreased amplitude of rotational motion, rather than immobilized components with sharply a reduced rotational rate. The largest relative effects occur at the end of the acyl chains, where the average local order parameter St of 16-PC increases from 0.06 for pure lipid to 0.66 for 1:1 DPPC/GA. The inhomogeneity in ordering in DPPC bilayers due to GA decreases with increasing temperature. The hyperfine tensor component Azz increases for 10-PC and 16-PC when GA is incorporated into DPPC bilayers, indicating that water has deeply penetrated into the DPPC bilayers. Simulations of published electron spin resonance spectra of 14-PC in dimyristoylphosphatidylcholine/cytochrome oxidase complexes were also better fit by additional components that were more ordered, rather than immobilized. The average local order parameter in this case is found to increase from 0.11 for pure dimyristoylphosphatidylcholine to 0.61 for a lipid/protein ratio of 50. These spectra and their simulations are similar to the results obtained with 16-PC in the DPPC/GA mixtures. The relevance to studies of lipid-protein interactions for other proteins is briefly discussed.  相似文献   

15.
This study aims at gaining insight into the specificity and molecular mechanism of monoglyceride-protein interactions. We used beta-lactoglobulin (beta-LG) and lysozyme as model proteins and both monostearoylglycerol and monopalmitoylglycerol as defined gel phase monoglycerides. The monoglycerides were used in different combinations with the two negatively charged amphiphiles dicetylphosphate and distearylphosphate. The interactions were characterized using the monolayer technique, isothermal titration calorimetry, (2)H-nuclear magnetic resonance (NMR) using deuterium labelled monoglycerides and freeze fracture electron microscopy (EM). Our results show that lysozyme inserts efficiently into all monolayers tested, including pure monoglyceride layers. The insertion of beta-LG depends on the lipid composition of the monolayer and is promoted when the acylchains of the negatively charged amphiphile are shorter than that of the monoglyceride. The binding parameters found for the interaction of beta-LG and lysozyme with monoglyceride bilayers were generally similar. Moreover, in all cases a large exothermic binding enthalpy was observed which was found to depend on the nature of the monoglycerides but not of the proteins. (2)H-NMR and freeze fracture EM showed that this large enthalpy results from a protein mediated catalysis of the monoglyceride L(beta) to coagel phase transition. The mechanism of this phase transition consists of two steps, an initial protein mediated vesicle aggregation step which is followed by stacking and probably fusion of the bilayers.  相似文献   

16.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

17.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

18.
As determined by freeze fracture electron microscopy, increasing levels of bovine brain galactosylceramide (GalCer) altered the surface structure of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers by inducing a striking "macro-ripple" phase in the larger, multilamellar lipid vesicles at GalCer mole fractions between 0.4 and 0.8. The term "macro-ripple" phase was used to distinguish it from the P beta' ripple phase observed in saturated, symmetric-chain length phosphatidylcholines. Whereas the P beta' ripple phase displays two types of corrugations, one with a wavelength of 12-15 nm and the other with a wavelength of 25-35 nm, the macro-ripple phase occurring in GalCer/POPC dispersions was of one type with a wavelength of 100-110 nm. Also, in contrast to the extended linear arrays of adjacent ripples observed in the P beta' ripple phase, the macro-ripple phase of GalCer/POPC dispersions was interrupted frequently by packing defects resulting from double dislocations and various disclinations and, thus, appeared to be continuously twisting and turning. Control experiments verified that the macro-ripple phase was not an artifact of incomplete lipid mixing or demixing during preparation. Three different methods of lipid mixing were compared: a spray method of rapid solvent evaporation, a sublimation method of solvent removal, and solvent removal using a rotary evaporation apparatus. Control experiments also revealed that the macro-ripple phase was observed regardless of whether lipid specimens were prepared by either ultra-rapid or manual plunge freezing methods as well as either in the presence or absence of the cryo-protectant glycerol. The macro-ripple phase was always observed in mixtures that were fully annealed by incubation above the main thermal transition of both POPC and bovine brain GalCer before rapid freezing. If the GalCer mixed with POPC contained only nonhydroxy acyl chains or only 2-hydroxy acyl chains, then the occurrence of macro-ripple phase decreased dramatically.  相似文献   

19.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

20.
The electron spin resonance spectra of spin-label positional isomers of stearic acid (n-SASL) incorporated into nicotinic acetylcholine receptors (nAcChoR) reconstituted into dioleoylphosphatidylcholine (DOPC) were deconvoluted into bilayer- and protein-associated components by subtraction under conditions of slow exchange. The selectivity of n-SASL (n = 6, 9, 12, and 14) for the lipid-protein interface of the nAcChoR was threefold greater than that of DOPC and independent of the spin label position. The temperature at which exchange became apparent as judged from lineshape broadening of the mobile lipid component spectrum was dependent upon the position of the spin-label moiety; near the bilayer center, exchange broadening occurred at lower temperatures than it did closer to the lipid headgroup. This suggests that the lipid headgroup region of boundary lipids is relatively fixed, whereas its acyl chain whips on and off the protein with increasing frequency near the bilayer center. Motions on the microsecond time scale were examined by microwave power saturation. Each n-SASL saturated more readily when incorporated into vesicles containing the nAcChoR than when in pure DOPC liposomes. Therefore, lipid mobility is perturbed by the nAcChoR on the microsecond time scale with an apparent magnitude that is relatively modest, probably due to exchange on this time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号