首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozawa K 《Uirusu》2004,54(1):49-57
The success of hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency (X-SCID) was a major breakthrough in the field of gene therapy. However, two patients treated with this gene therapy developed leukemia at a later time, and retroviral vector-mediated gene transfer was considered to trigger leukemogenesis; i.e. insertional mutagenesis caused activation of LMO 2 gene, which was one step toward leukemia development. To cope with this serious problem, basic studies are required to improve the safety of retroviral vectors and to develop the method for site-specific integration of transgenes. In addition, we have to develop technologies such as selective amplifier genes (SAGs), the system for selective expansion of transduced cells, in order to obtain therapeutic efficacy of hematopoietic stem cell gene therapy in many other disorders. Moreover, clinical applications of AAV vector are promising from the standpoint of safety issue, because this vector is derived from non-pathogenic virus. AAV vector is appropriate for gene transfer into neurons, muscles, and hepatocytes. For example, gene therapy for Parkinson's disease is investigated using AAV vectors. Genetic manipulation is also one of the indispensable technologies in the field of regeneration medicine, and further promotion of basic research is important.  相似文献   

2.
用逆转录病毒载体将单纯疱疹病毒胸苷激酶基因(HSVtk)导入恶性肿瘤细胞,随后可应用药物9-(1,3-二羟基-丙氧基-甲基)鸟嘌呤(ganciclovir,GCV)选择性地杀死肿瘤细胞.将HyTK基因替换逆转录病毒载体GlNa中的neo基因,构建成重组逆转录病毒载体GTK,转染混合包装细胞(双噬性PA317细胞和单噬性GP+E-86细胞),通过“乒乓效应”获得高滴度重组病毒.用该重组病毒转染小鼠恶性黑色素瘤细胞系B16细胞,用hygromycinB筛选出阳性细胞克隆(HyTK+),经PCR方法检测证明HyTK基因已成功地导入肿瘤细胞中,且不含可复制的辅助病毒.分别用不同浓度的GCV作用于HyTK-及HyTK+的B16细胞,光镜下观察24h和48h后细胞形态及进行活细胞计数.结果表明,GCV浓度大于0.1μmol/L时即对B16/HyTK+细胞有显著的杀伤作用  相似文献   

3.
Insertional mutagenesis resulting in a leukaemia-like lymphoproliferative disease, as observed in the X-SCID (severe combined immunodeficiency) clinical trial using a gamma-retroviral vector that transferred a functional copy of the defective gene into hematopoietic precursor cells of affected children, sparked a debate about a ban on conventional gamma-retroviral vectors. This commentary summarizes the relevant data on this topic and concludes that there is no preclinical or clinical evidence as yet that SIN vectors, which self-inactivate the retroviral long terminal repeats (LTRs), will indeed show an improved safety profile. Conventional murine leukaemia virus (MLV) vectors can thus be used further in clinical gene therapy trials but require a thorough case-by-case risk-benefit analysis.  相似文献   

4.
5.
BACKGROUND: Wild-type RD114 virus is capable of generating syncytia during its replication, and it is believed that cell-free viruses direct the fusion of neighboring cells. The RD114 envelope (Env) that mediates this fusion event is now widely used to pseudotype retroviral and lentiviral vectors in gene therapy. Indeed, vectors pseudotyped with RD114 Env are very efficient to transfer genes into human hematopoietic cells, and they are resistant to human complement inactivation. In this study, we have tested the potential of RD114-pseudotyped vectors produced from the FLYRD18 packaging cell line to induce syncytia. METHODS: RD114-pseudotyped vectors produced from the FLYRD18 packaging cells were added on tumor cell lines, and the formation of syncytia was assessed by microscopy after cell fixation and methylene blue staining. The kinetics of syncytium formation was analyzed by time-lapse microscopy. Finally, the cytotoxic effect of RD114-pseudotyped vectors was measured by the MTT assay on tumor cells, and in combination with the TK/GCV strategy. RESULTS: We have found that these vectors were able to mediate cell-to-cell fusion of human tumor cell lines. A few hours after addition of the vector, cells started to aggregate to form syncytia that eventually evolved toward cell death 48 h postinfection. RD114-pseudotyped vectors were very efficient at killing human cancer cells, and they were also able to enhance dramatically the cytotoxic effect of the TK/GCV strategy. CONCLUSIONS: These findings indicate that RD114-pseudotyped vectors used alone, or in combination with a suicide gene therapy approach, have great potential for the treatment of cancer.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) deleted for the immediate-early gene was applied for treatment of hepatoma cells of SKHep 1 and Huh-7. Hepatoma cells were cultured in medium containing HSV1 expressing GFP gene (QOZ/HG) to determine its transfection rate, and both cell lines infected by MOI 1 of QOZ/HG were found to have high expression of GFP without cytotoxicity. Subcutaneous growth of SKHep 1 cell tumor in nude mice was significantly reduced by injection of replicative-deficient herpes virus (TOZ.1) containing Tk-gene with administration of GCV, in comparison with that of noninjected tumor. SCID mice of peritonitis carcinomatosis due to Huh-7 hepatoma cells infected with TOZ.1 could survive longer under administration of GCV than those without TOZ.1. Therefore replicative-deficient HSV1 is a useful vector for treatment of human hepatoma cells, and TOZ.1 with GCV may be applied to suicide gene therapy for hepatoma and peritonitis carcinomatosis of hepatoma cells.  相似文献   

7.
The ability to express recombinant genes in vivo offers potential new treatments for human disease if questions of safety and toxicity can be addressed. Complications of gene transfer could include, for example, overexpression of introduced genes for growth or angiogenic factors or insertional mutagenesis, both of which could cause uncontrolled cell growth. We report the development of a suicide retroviral vector that provides a method to eliminate cells undergoing rapid growth in vivo. A murine amphotropic retroviral vector was constructed in which the gene for herpesvirus thymidine kinase was included to render proliferating cells sensitive to ganciclovir, and the Escherichia coli beta-galactosidase gene served as a reporter. This vector's efficacy was first assessed in vitro, and beta-galactosidase activity was abolished in several cell lines after treatment with ganciclovir. In vivo, a transplantable murine CT26 adenocarcinoma whose cells were transduced with this vector regressed completely after administration of ganciclovir. In contrast, expression in nondividing cells within rabbit arteries transduced by retroviral infection in vivo was unaffected. This suicide vector therefore eliminates transformed cells but allows survival of normal nondividing cells that express its specific recombinant genes in vivo, and may thus improve the safety and efficacy of gene transfer into living organisms.  相似文献   

8.
9.
According to the fact that CEA gene expressed only in lung adenocarcinoma but not in normal lung cells, a retroviral expression vector (pCEATK) of the herpes simplex virus thymidine kinase (HSV-TK) gene regulated by CEA promoter was constructed and introduced into CEA-producing human lung adenocarcinoma cells GL and non-CEA-producing HeLa cells. The expression of pCEATK and Ganciclovir (GCV) sensitivity of the transfected cells were tested in vitro and in vivo . pCEATK expressed only in CEA-producing GL cells but not in non-CEA-producing HeLa cells. The sensitivity to GCV of pCEATK-transfected GL was 992 times higher compared with that of the parental cell line and there was obvious "bystander effect" in vitro. HeLa cells transfected wtih pCEATK were still resistant to GCV. Injection of GCV resulted in significant regression of pCEATK-transfected GL tumors in nude mice. In addition, all mice with any fraction of GL cells expressing HSV-TK exhibited a significant reduction in tumor growth, including mice  相似文献   

10.
Over the past dozen years, the majority of clinical gene therapy trials for inherited genetic diseases and cancer therapy have been performed using murine onco-retrovirus as the gene delivery vector. The earliest systems used were relatively inefficient in both the rates of transduction and expression of the transgene. Formidable obstacles inherent in the cell biology and/or the immunology of the target cell systems limited the efficacy of gene therapy for many target diseases. Development of novel retrovirus gene transfer systems that are in progress have begun to overcome these obstacles. Evidence of this progress is the recent successful functional correction of the immune T and B lymphocyte deficiency in patients with X-linked severe combined immunodeficiency (X-SCID) and adenosine deaminase (ADA)-deficient SCID following onco-retrovirus vector ex vivo transduction of autologous marrow stem cells [Science 296 (2002) 2410; Science 288 (2000) 669; N. Engl. J. Med. 346 (2002) 1185]. These achievements of prolonged clinical benefit from gene therapy were tempered by the finding of insertional mutageneses in two of the treated X-SCID patients [N. Engl. J. Med. 348 (2003) 255].  相似文献   

11.
12.
Endothelial cells are attractive targets for gene transfer because of their immediate contact with the bloodstream, and, therefore, they might serve as vehicles for therapeutic drug delivery. Recently, we and others reported that endothelial cells of animal origin efficiently express both secretory and nonsecretory recombinant proteins. We now show that human endothelial cells are also capable of expressing a recombinant gene following transduction with retroviral vectors. Human umbilical vein endothelial cells were transduced with either the N2 or the SAX vector. Following selection with G418, cells transduced by both vectors were found to express neophosphotransferase activity, the product of the neomycin resistance gene. The fact that a recombinant gene can be readily inserted and efficiently expressed into human endothelial cells suggests that these cells may be able to serve a role in human gene therapy.  相似文献   

13.
BACKGROUND: T-cells expressing the HSV1-TK suicide gene can be used for the control of graft-versus-host disease following allogeneic stem cell transplantation. To develop clinical trials based on such a strategy, we have generated under good manufacturing procedures a novel 'split genome' human packaging cell line (1704 cells). METHODS: To minimize the risk of generating replication-competent retroviruses, pol was truncated to remove sequences overlapping with env. To improve retroviral infection and selection of transduced T-cells, high titers of GALV-pseudotyped retroviral particles harboring a bicistronic Thy1-IRES-TK vector coding for the CD90 GPI-anchored membrane molecule were produced by 1704 cells. RESULTS: Using 1704 cell supernatant and an optimized transduction protocol, approximately 50% of primary T-cells were transduced and could then be purified (approximately 95%) using clinical-grade immunomagnetic beads directed against CD90. Over 96% of these OKT3/IL-2-activated CD90(+)-selected T-cells were killed by ganciclovir. Cell proliferation and cytokine production of transduced T-cells and HLA-restricted cytotoxicity of transduced T-cell clones were identical to those of their non-transduced counterparts cultured under the same conditions. CONCLUSIONS: GALV-pseudotyped retroviral particles harboring a bicistronic Thy1-IRES-TK vector allow efficient transduction and rapid selection of human T-cells under conditions applicable for clinical trials using the new human 1704 packaging cell line.  相似文献   

14.
Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients.  相似文献   

15.
Current therapies for adrenocortical carcinomas do not improve the life expectancy of patients. In this study, we tested whether a gene-transfer therapy based upon a suicide gene/prodrug system would be effective in an animal model of the disease. We employed E4- and E1A/B-depleted, herpes simplex virus-thymidine kinase-expressing adenoviral mutants that transcomplement each other within tumor cells, hereby improving transgene delivery and efficacy by viral replication in situ. Transcomplementation of vectors increased the fraction of transduced of tumor cells. This increase was accompanied by greater tumor volume reduction compared to non-transcomplementing approaches. Survival time improved with non-replicating vectors plus GCV compared to controls. However, transcomplementation/replication of vectors led to a further significant increment in anti-tumor activity and survival time (p < 0.02). In treated animals, we observed a high number of apoptotic nuclei both adjacent to and distant from injection sites and sites of viral oncolysis. Ultrastructural analyses exhibited nuclear inclusion bodies characteristic of virus production in situ, and provided further evidence that this therapy induced apoptotic cell death within tumor cells. We conclude that the efficacy of suicide gene therapy is significantly amplified by viral replication and, in combination with GCV, significantly reduces tumor burden and increases survival time.  相似文献   

16.
MUC1 tumor antigen is a target for immunotherapy of most human adenocarcinomas and some hematological malignancies. Expression of a MUC1-specific, MHC-unrestricted single-chain T cell receptor (scTCR) on cells of both innate and adaptive immune system through reconstitution of lethally irradiated mice by retroviral vector-transduced bone marrow cells, had been shown to effectively control the growth of MUC1+ tumors independent of their MHC type, suggesting that this receptor is a good candidate for broadly applicable gene therapy/immunotherapy. However, the translational application of this immuno-gene therapy modality was discouraged by the progressive transgene silencing in reconstituted T and B cells, as well as the potential of tumorogenesis intrinsic to oncoretroviral vectors. To overcome these problems and facilitate the future clinical use of this receptor, we have constructed a panel of novel self-inactivating lentiviral vectors (LVs) which harbor two independent internal promoters, one driving expression of the scTCR gene and the other of a fusion suicide gene, the HSV-TK–EGFP fusion gene, allowing the transduced cells to be destroyable by the pro-drug ganciclovir. Despite the large size of insert, these vectors were efficiently packaged into high titer virus that transferred the expression of transgene in both T cell lines and primary T cells. Sustained expression was maintained in a T cell line for over 4 months in vitro, suggesting its efficient resistance to transgene silencing. Both scTCR and HSV-TK–EGFP genes were functional in the transduced cells, as evidenced by their specific recognition of MUC1+ tumors and efficient eradication by ganciclovir.  相似文献   

17.
18.
The high mutation rates of retroviruses are a potential problem with retroviral vectors. We studied the mutation rates and spectra of p53 sequences transduced with a retroviral vector in a cancer gene therapy model. When p53-deficient H358 non-small cell lung cancer cells were treated with a retroviral vector carrying normal p53 cDNA, most of transduced cells were killed by apoptosis. However, a small number of clones escaped p53-mediated apoptosis. We examined the p53 cDNA structure in these resistant clones. PCR-based analysis showed that 88/102 clones had detectable mutations in p53, including gross rearrangements, deletions/insertions, and base substitutions. To study the mutation rate of the p53 sequence in all transduced clones, the retroviral vector containing the non-functional p53 gene and the Neo-resistant marker gene was introduced into H358 cells. Only one of 95 isolated clones showed a base substitution. These results indicate that the mutation rate of p53 is not particularly high, but there is a significant risk that cancer cells will resist p53 gene therapy as a result of retroviral replication errors.  相似文献   

19.
Retroviral vectors for human gene delivery   总被引:7,自引:0,他引:7  
The potential for gene therapy to cure a wide range of diseases has lead to high expectations and a great increase in research efforts in this area. At present, viral vectors are the most efficient means of delivering a corrective gene into human cells. While a number of different viral vectors are under development, retroviral vectors are currently the most common type used in clinical trials today. However, the production of retroviral vectors for gene therapy applications faces a number of challenges. Of primary concern is the low titre of vector stocks produced by packaging cells in culture and the inherent instability of retroviral vector activity. The problems facing large-scale retroviral vector production are outlined in this review and the research efforts by a number of groups who have attempted to optimise production methods are presented.  相似文献   

20.
Gene therapy strategies for humans have been limited by low transduction efficiencies and poor expression of retroviral vectors in differentiated progeny cells carrying the transduced vector. Here we describe a strategy utilizing a cell surface reporter gene, murine thy-1.2, selectable by fluorescence-activated cell sorting (FACS), to achieve higher gene marking efficiencies. Human CD34-positive cells were transduced by a murine retroviral vector bearing the thy-1.2 marker and pseudotyped with vesicular stomatitis virus G protein, followed by FACS to enrich for CD34-positive cells that express Thy-1.2 on the cell surface. Gene marking and expression after differentiation into thymocytes were assessed in a SCID-hu Thy/Liv mouse model for human lymphoid progenitor cell gene therapy. We found that virtually all of the differentiated T-cell progeny were marked with vector sequences. It is of particular importance that reconstitution with the selected cells resulted in expression of Thy-1.2 in up to 71% of donor-derived thymocytes. It is of note that the donor-derived thymocytes that did not express Thy-1.2 still harbored vector thy-1.2 sequences, suggesting repression of transgene expression in some cells during progenitor cell differentiation into thymocytes. These studies provide a proof of concept for efficient expression of transgenes through T-lymphoid differentiation and a potential basis for utilizing similar strategies in human gene therapy clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号