首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aims of this study were to identify different motile sperm subpopulations in fresh ejaculates from six Ile de France rams, by using a computer-assisted sperm motility analysis (CASA) system, and to evaluate the effects of individual ram and season on population distribution. Overall sperm motility and individual kinematic parameters of motile spermatozoa were evaluated for 125,312 spermatozoa, defined by curvilinear velocity (VCL), linear velocity (VSL), average path velocity (VAP), linearity coefficient (LIN), straightness coefficient (STR), wobble coefficient (WOB), mean amplitude of lateral head displacement (ALH) and frequency of head displacement (BCF). A multivariate cluster analysis was carried out to classify these spermatozoa into a reduced number of subpopulations according to their movement patterns. The statistical analysis clustered the whole motile sperm population into five separate groups: subpopulation 1, constituted by rapid, progressive and non sinuous spermatozoa (VCL=126.41 μm/s, STR=92.87% and LIN=86.47%); subpopulation 2, characterized by progressive spermatozoa with moderate velocity (VCL=74.74 μm/s and STR=84.03%); subpopulation 3, represented by rapid, progressive and sinuous spermatozoa (VCL=130.45 μm/s, STR=76.02% and LIN=47.68%); subpopulation 4 represents rapid nonprogressive spermatozoa (VCL=128.69 μm/s and STR=44.09%); subpopulation 5 includes poorly motile, nonprogressive spermatozoa with a very irregular trajectory (VCL=36.81 μm/s and STR=47.04%). Our results show the existence of five subpopulations of motile spermatozoa in ram ejaculates. The frequency distribution of spermatozoa within subpopulations was quite similar for the six rams, and the five subpopulations turned out to be very stable along seasons.  相似文献   

2.
The main aim of this work was to analyze the possible relationship between the structures of motile-sperm subpopulations and boar (Sus scrofa domesticus) sperm resistance to freezability. For this purpose, 45 boar ejaculates were subjected to a standard freezing-thawing protocol, and afterwards they were classified into three groups, in accordance with their resistance to freezing-thawing. Our analysis yielded four separate motile-sperm subpopulations in all of the studied ejaculates, both in fresh samples and after freezing-thawing. Furthermore, whereas curvilinear velocity (VCL), mean velocity (VAP), and dance (DNC) of sperm from Subpopulation 1 underwent significant increases after freezing-thawing in samples with a good response to freezing-thawing, the same parameters of Subpopulation 1 either did not undergo significant variations (VCL and DNC) or even showed a decrease (VAP) (from 20.4 ± 0.4 μm/sec in fresh samples to 15.2 ± 2.2 μm/sec after freezing-thawing) in samples with the poorest response. Similarly, the behavior of other motility parameters in each subpopulation was also very different in the worst samples when comparing them with those with a good or average response to cryopreservation. Additionally, the DNC of all four subpopulations was in all cases lower in samples with the poorest characteristics of freezability. This was not the only difference, and significant changes in parameters such as the VCL of Subpopulations 2 and 4, linearity coefficient (LIN) of Subpopulations 1, 2, and 3, and wobble coefficient (WOB) of Subpopulations 2 and 3 were also observed in samples with different response to freezing-thawing. Meanwhile, the determination of mitochondrial activity and mitochondrial-linked reactive oxygen species formation indicated that the samples with the poorest freezability characteristics were also those with the lowest mitochondrial activity. We conclude that boar ejaculate resistance to cryopreservation seems to be related to the specific, initial motile-sperm subpopulation structure. In turn, this structure would be closely related to the specific, overall mitochondrial activity, which would be a very important indicator of sperm function. Furthermore, and as a practical conclusion, an in-depth analysis of motile sperm subpopulation structure together with functional tests could improve the design of predictive strategies for the freezability of boar sperm.  相似文献   

3.
The aims of the present study were to: (1) determine if discrete motile sperm subpopulations exist and their incidence in fresh dog ejaculates, (2) evaluate the effects of cryopreservation on the distribution of spermatozoa within the different subpopulations, and (3) determine the effect of the discontinuous PureSperm(?) gradient on the sperm subpopulation structure of frozen-thawed dog spermatozoa. Semen from 5 dogs were collected and cryopreserved following a standard protocol. After thawing, semen samples were selected by centrifugation on PureSperm(?). Sperm motility (assessed by computerized-assisted semen analysis, CASA) was assessed before freezing, just after thawing and after preparation on the PureSperm(?) gradients. Cryopreservation had a significant (P<0.001) effect on CASA-derived parameters. PureSperm(?) centrifugation yielded sperm suspensions with improved motility (P<0.01). A multivariate clustering procedure separated 19414 motile spermatozoa into four subpopulations: Subpopulation 1 consisting of poorly active and non-progressive spermatozoa (20.97%), Subpopulation 2 consisting of slow and low-linear spermatozoa (18.24%), Subpopulation 3 consisting of highly active but non-progressive spermatozoa (20.75%), and Subpopulation 4 consisting of high speed and progressive spermatozoa (40.03%). Although, cryopreservation had a significant (P<0.001) effect on both the frequency distribution of spermatozoa within subpopulations and the motion characteristics of each subpopulation, the sperm subpopulation structure was perfectly maintained after freezing and thawing. The selected sperm samples was enrich in Subpopulation 4, reaching a proportion of 31.9% of the present spermatozoa, in contrast with the unselected sperm samples, where this sperm subpopulation accounted for 24.9% of the total. From these results, we concluded that four well-defined motile sperm subpopulations were present either in fresh semen, in unselected sperm samples or in selected preparations from dogs. The discontinuous PureSperm(?) gradient is a simple method to improve the quality of canine frozen-thawed semen samples, since Subpopulation 4 (high-speed and progressive spermatozoa) was more frequently observed after preparation on the gradient. Finally, this study also demonstrated that the general motile sperm structure present in dog remains constant despite the effect caused by either cryopreservation or separation on PureSperm(?) gradient.  相似文献   

4.
The aims of the present study were: (1) to determine the existence of sperm subpopulations with specific motility characteristics in fresh ejaculates from Holstein bulls, (2) to investigate the effects of semen cryopreservation and post-thaw incubation on the distribution of spermatozoa within the different subpopulations, and (3) to evaluate the existence of between-bull variation in the sperm subpopulations structure of fresh and frozen-thawed semen. Six ejaculates were collected from each of 9 Holstein bulls and cryopreserved following a standard protocol. Overall sperm motility and the individual kinematic parameters of motile spermatozoa, determined using a CASA system, were evaluated before freezing and after 0, 2 and 4h of post-thaw incubation at 37 degrees C. Data from 16,740 motile spermatozoa, defined by VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF, were analysed using a multivariate clustering procedure to identify and quantify specific subpopulations within the semen samples. The statistical analysis clustered all the motile spermatozoa into four separate subpopulations with defined patters of movement: Subpopulation (Subp. 1) moderately slow but progressive spermatozoa (23.2%), (Subp. 2) highly active but non-progressive spermatozoa (16.0%), (Subp. 3) poorly motile non-progressive sperm (35.5%), and (Subp. 4) highly active and progressive sperm (25.3%). Subpopulations 2 and 4 significantly (P<0.01) decreased during cryopreservation and post-thaw incubation (Subp. 2: 21.1%, 18.1%, 8.7% and 5.9%; and Subp. 4: 34.1%, 20.6%, 15.2% and 7.3%, respectively, for fresh, 0, 2 and 4h post-thaw) whereas Subp. 3 significantly (P<0.01) increased (10.7%, 27.2%, 27.2% and 30.7%, respectively, for fresh, 0, 2 and 4h post-thaw). The frequency distribution of spermatozoa within subpopulations was quite similar for the 9 bulls, either in fresh or frozen-thawed semen, and differences among bulls were mainly due to differences in the Subp. 4. Significant correlations (P<0.01) were found between the proportions of spermatozoa assigned to Subp. 4 in the fresh ejaculates and those in frozen-thawed semen after 0 (r=0.473), 2 (r=0.513) and 4h post-thaw (r=0.450). This indicated that the ejaculates with the highest subpopulations of rapid and progressive sperm were also the most resistant to cryopreservation and showed the best post-thaw sperm longevity.  相似文献   

5.
The aims of this study were to test the presence of discrete sperm subpopulations in Florida goat ejaculates using a computer-assisted sperm analysis (CASA) system and to establish the relationship between the distribution of the subpopulations found and individual buck, total motility, and sperm concentration. Clustering methods and discriminant analysis were applied to identify motile sperm subpopulations within the semen samples. Principal component analysis revealed that three principal components represented more than the 88% of the variance. After the cluster analysis was performed four motile sperm subpopulations were identified. Subpopulation 1 consisted of rapid and linear sperm (39.84%), Subpopulation 2 consisted of slow but linear spermatozoa (33.23%), Subpopulation 3 consisted of rapid, high ALH but non-linear spermatozoa (14.63%), and Subpopulation 4 consisted of slow and non-linear spermatozoa (12.31%). There were significant differences in the distribution of the four subpopulations (P < 0.001) as well as in the percentage of total motility and the overall sperm concentration (P < 0.05) in fresh ejaculates among the four bucks tested. In conclusion, four well-defined motile sperm subpopulations were identified in Florida goat ejaculates. The relationship between the distribution of the sperm subpopulations and individual buck, total motility, and sperm concentration shows that the spermatozoa of each have different motility patterns. Therefore, the study of discrete subpopulations of motile spermatozoa could lead to a substantial increase in information acquired during caprine semen analysis.  相似文献   

6.
The aim of this study was to evaluate the effects of cold storage and egg yolk concentration on the distribution of spermatozoa within the different subpopulations. Twenty ejaculates from 4 dogs were collected, diluted in either TRIS buffer containing 20% (TEY20) or 10% centrifuged egg yolk (TEY10) and cooled following a conventional protocol. The kinematic parameters of individual spermatozoa were evaluated in fresh ejaculates and after 24 and 72 h of preservation at 5°C. A multivariate clustering procedure separated 54,261 motile spermatozoa into four subpopulations: Subpopulation 1 consisting of poorly active and non-progressive spermatozoa (19.80%), Subpopulation 2 consisting of slow and low-linear spermatozoa (25.21%), Subpopulation 3 consisting of high speed and progressive spermatozoa (23.88%), and Subpopulation 4 consisting of highly active but non-progressive spermatozoa (31.11%). Although, cold storage had a significant (P<0.05) effect on both the frequency distribution of spermatozoa within subpopulations and the motion characteristics of each subpopulation, the sperm subpopulation structure was perfectly maintained after cold storage. Subpopulations 1 and 2 significantly (P<0.001) decreased during cold storage (Subpopulation 1: 26.6, 16.9 and 18.4%; and Subpopulation 2: 33.6, 21.3 and 24.0%, respectively, for fresh, 24 and 72 h post-cooled), whereas Subpopulations 3 and 4 significantly (P<0.05) increased (Subpopulation 3: 16.7, 27.6 and 24.3%, and Subpopulation 4: 23.1, 34.1 and 33.4%, respectively, for fresh, 24 and 72 h post-cooled). Regarding the relative percentage of spermatozoa within each extender, Subpopulation 3 was more frequently observed in TEY20 after both 24 and 72 h of cold storage. Significant correlations (P<0.05) were found between the proportions of spermatozoa assigned to Subpopulation 3 in the fresh ejaculates and those in stored samples after 24 h (r=0.48498). In conclusion, cold storage significantly modified both the specific parameters and the distribution of spermatozoa within subpopulations. These changes did not affect the general motile sperm structure present in dog, which is conserved during cold storage. The analysis of the changes observed in structures of subpopulations also suggests that the TEY20 provide more effective preservation of dog semen during cold storage.  相似文献   

7.
The main aim of this study is to assess the influence of freeze/thawing on motile sperm subpopulations in ejaculates from two phylogenetically different mammalian species, boar and donkey. Our results indicate that, whereas boar and donkey sperm respond very differently in their mean motion characteristics to freezing/thawing, this process did not change the existence of a 4-subpopulations structure in the ejaculates in either species when these subpopulations were defined by taking values of curvilinear velocity (VCL) as reference. Moreover, the freezing/thawing-linked changes in mean sperm-motion characteristics in both boar and donkey semen were especially due to changes in the proportion among each concrete subpopulation. In this way, the freezing/thawing-induced mean increase in motion characteristics observed in boar sperm was a result of the decrease in the percentage of sperm in Subpopulation 1 (from 53.9%+/-4.7% to 31.2%+/-3.9% after thawing) and a concomitant increase of sperm from Subpopulations 3 (from 13.3%+/-2.5% to 32.6%+/-3.9% after thawing) and 4 (from 3.4%+/-0.9% to 8.0%+/-1.1% after thawing). On the contrary, changes in mean motility of frozen/thawed donkey sperm were linked to an increase in the percentage of sperm in Subpopulation 1 (from 31.5%+/-4.3% to 58.8%+/-4.9% after thawing) and a concomitant decrease of sperm from Subpopulations 3 (from 32.4%+/-3.2% to 6.6%+/-1.8% after thawing) and 4 (from 12.2%+/-2.5% to 7.3%+/-1.9% after thawing). In conclusion, our results seem to indicate that motility changes induced by the freezing/thawing protocol are linked to concomitant changes in both the specific parameters and, more importantly, to the specific percentage of each of the motile sperm subpopulations. These changes did not affect the overall proportion of motile sperm present in both boar and donkey, which is conserved despite the detrimental effect caused by freezing/thawing in both species. Finally, the presence of some kind of motile sperm subpopulations structure has been described in mammalian species with a very great phylogenetic distance, thus suggesting that this structure could play some role in the maintenance of the overall function of mammalian ejaculates.  相似文献   

8.
The aim of this work was to study the effects of dilution and centrifugation (i.e., two methods of reducing the influence of the seminal plasma) on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey (Equus asinus) semen. Fifty ejaculates from nine Catalonian jackasses were collected. Gel-free semen was diluted 1:1, 1:5 or 1:10 with Kenney extender. Another sample of semen was diluted 1:5, centrifuged, and then resuspended with Kenney extender until a final dilution of 25 × 106 sperm/ml was achieved (C). After 24 h, 48 h or 72 h of refrigerated storage at 5 °C, aliquots of these semen samples were incubated at 37 °C for 5 min. The percentage of viable sperm was determined by staining with eosin-nigrosin. The motility characteristics of the spermatozoa were examined using the CASA system (Microptic, Barcelona, Spain). At 24 h, more surviving spermatozoa were seen in the more diluted and in the centrifuged semen samples (1:1 48.71%; 1:5 56.58%, 1:10 62.65%; C 72.40%). These differences were maintained at 48 h (1:1 34.31%, 1:5 40.56%, 1:10 48.52%, C 66.30%). After 72 h, only the C samples showed a survival rate of above 25%. The four known donkey motile sperm subpopulations were maintained by refrigeration. However, the percentage of motile sperms in each subpopulation changed with dilution. Only the centrifuged samples, and only at 24 h, showed exactly the same motile sperm subpopulation proportions as recorded for fresh sperm. However, the 1:10 dilutions at 24 and 48 h, and the centrifuged semen at 48 h, showed few variations compared to fresh sperm. These results show that the elimination of seminal plasma increases the survival of spermatozoa and the maintenance of motility patterns.The initial sperm concentration had a significant (P < 0.05) influence on centrifugation efficacy, but did not influence the number of spermatozoa damaged by centrifugation. In contrast, the percentage of live spermatozoa in the fresh semen significantly influenced the number of spermatozoa damaged by centrifugation, but not centrifugation efficacy.  相似文献   

9.
Incubation of diluted boar sperm from fresh ejaculates in a previously established "in vitro" capacitation medium induced a significant, time-dependent increase in several mean parameters of sperm motility, such as curvilinear velocity (VCL), linear velocity (VSL), mean velocity (VAP), linearity coefficient (LIN), straightness coefficient (STR) and wobble coefficient (WOB). Furthermore, motile boar-sperm semen samples were structured in four definite subpopulations. Subpopulation 1 showed the lowest values of VCL, VSL and VAP and also low values of linearity. Subpopulation 2 showed the second lowest values of VCL and VAP and higher values of LIN and STR. Subpopulation 3 was characterized by high values of velocity and low values of linearity. Finally, Subpopulation 4 was characterized by high values of velocity and linearity. "In vitro" capacitation and further acrosome reaction induced changes in the motility characteristics of each subpopulation as well as in their percentage distribution, Subpopulations 3 and 4 being those that showed the most significant changes. However, despite these changes, the observed, overall four-subpopulation structure was firmly maintained during the entire "in vitro" capacitation and acrosome-reaction process. Our results suggest that capacitation-induced motility changes are related to specific changes in the percentage of each motile-sperm subpopulation in the ejaculate without losing the overall, specific four-subpopulation structure. In this way, the maintenance of a four-subpopulation structure seems to be important in the control of the whole ejaculate physiology.  相似文献   

10.
《Theriogenology》2015,84(9):1525-1533
The main aim of this study was to determine whether acrosin activity could predict boar sperm freezability. For this purpose, we characterized the changes in sperm quality and acrosin activity throughout the cryopreservation procedure of sperm samples from 30 Pietrain boars by analyzing four critical steps: step 1 (extended sperm at 15 °C), step 2 (cooled sperm at 5 °C), step 3 (30 minutes postthaw), and step 4 (240 minutes postthaw). Freezability ejaculate groups were set on the basis of sperm motility and membrane integrity after freeze–thawing. Results obtained highlighted the low predictive value in terms of freezability of sperm motility and kinematics and sperm membrane integrity, as no differences between good and poor freezability ejaculates were seen before cryopreservation. Significant differences (P < 0.05) between ejaculate groups were observed in the cooling step at 5 °C for sperm kinetic parameters, and after thawing for sperm motility and membrane integrity. In contrast, acrosin activity appeared as an indicator of boar sperm freezability because the differences (P < 0.05) between good and poor freezability ejaculates manifested yet in extended samples at 15 °C. On the other hand, we also found that variations in sperm kinematics, membrane lipid disorder, intracellular calcium content, acrosome integrity, and acrosin activity throughout the cryopreservation procedure were indicative of a significant damage in spermatozoa during the cooling step in both ejaculate groups. In conclusion, the main finding of our study is that acrosin activity can be used as a reliable predictor of boar sperm freezability because it differs significantly between good and poor freezability ejaculates yet before freeze–thawing procedures took place, i.e., in the refrigeration step at 15 °C.  相似文献   

11.
Three egg-yolk diluents, which have been used successfully in cryopreservation of human spermatozoa, were compared for their ability to protect macaque semen against cryodamage. TEST (Tes + Tris + egg yolk), TEST with 20% skim milk (TSM), and egg yolk-citrate (EYC), each with 3 or 5% glycerol were compared using 12 ejaculates from 6 male cynomolgus macaques. Computer-aided analysis of sperm motion was used to determine the percentage motility (%M), curvilinear velocity (VCL), and linearity (LIN) of spermatozoa after thawing. The supravital stain Hoechst 33258 and a fluoresceinated pea lectin were used to determine the % of viable spermatozoa with intact acrosomes. TSM and TEST were superior to EYC in terms of % M and of % viable, acrosome-intact spermatozoa. TSM and TEST produced equivalent VCL and LIN values, while EYC had clearly reduced VCL and LIN. There were no interactions between diluent and glycerol level. The 3% glycerol level gave superior results to 5% glycerol for %M. EYC, which is widely used for cryopreservation of human spermatozoa, was not suitable for cynomolgus monkey semen. Artificial insemination with semen cryopreserved in TSM resulted in a healthy, full-term infant.  相似文献   

12.
In this study we investigated the changes that in vitro incubation under capacitating conditions could induce on the motile sperm subpopulations present in frozen-thawed dog semen samples. In addition, cryopreserved dog spermatozoa were exposed to CCM (canine capacitating medium) solutions of 300, 150, 100 and 75mOsm and the proportions of live spermatozoa with swollen tails were recorded (HOST+). Finally, frozen-thawed dog semen samples were submitted to a second cycle of freezing and thawing and the overall sperm motility, as well as the motile sperm subpopulations structure, was determined. Cryopreserved dog semen samples were structured in four sperm subpopulations with different motility characteristics: Subpopulation (Sp) 1 contained moderately rapid and progressive spermatozoa (25.2±8.5%), Sp 2 included poorly motile and non progressive sperm (15.3±8.1%), Sp 3 was represented by moderately slow non progressive sperm (14.9±5.9%), and Sp 4 contained the most rapid and progressive sperm (20.8±14.7%). After 3h of incubation under capacitating conditions, percentages of spermatozoa assigned to Sp 2 (6.1±3.4%) and 3 (4.9±2.8%) significantly decreased, whereas those assigned to Sp 1 (17.0±11.2%) and 4 (16.2±12.8%) did not significantly change. Significant correlations were found between percentages of HOST+, for the 3 osmolarities tested, and percentages of spermatozoa included in Sp 1 and 4 after 3h of incubation in capacitating conditions or in Sp 4 after double freezing and thawing. These results indicated that subpopulations with the most rapid and progressive sperm seemed to be highly resistant to in vitro incubation in capacitating conditions and to osmotic stress, suggesting they are likely to be the source of the fertilizing population.  相似文献   

13.
Adding cryopreservation media with reduced glutathione (GSH) has previously been shown to maintain the motility, membrane integrity and fertilizing ability of frozen-thawed boar sperm, although the effects of GSH on good (GFE) and poor freezability (PFE) ejaculates rely upon the intrinsic ejaculate freezability. The resilience to withstand freeze-thawing procedures has previously been related to the existence of a specific distribution of motile sperm subpopulations, which differs between GFE and PFE. Thus, the main aim of this study was to determine whether the addition of GSH to freezing media has any impact on the distribution of motile sperm subpopulations in GFE and PFE. With this purpose, 18 GFE and 13 PFE were cryopreserved with or without 2 mM GSH. Sperm quality and motile subpopulations were evaluated at 30 min and 4 h post-thawing. Three subpopulations were identified and the percentages of spermatozoa belonging to the fastest and most linear subpopulation, which was referred as ‘SP1’, decreased over post-thawing time. Good freezability ejaculates that were cryopreserved in the presence of 2 mM exhibited a significantly higher percentage of spermatozoa belonging to SP1 than the other combinations of treatment and freezability both at 30 min (mean ± SEM: GFE-C: 16.6 ± 0.4; GFE-GSH 27.7 ± 0.6) and 4 h post-thawing (GFE-C: 7.8 ± 0.2 vs. GFE-GSH: 16.7 ± 0.4). In conclusion, the positive effect of GSH on the motility of frozen-thawed sperm is related to a specific sperm subpopulation (SP1), which could coincide with the fertile sperm one.  相似文献   

14.
15.
Semen was collected from six adult (3.5-7-year-old) Murrah buffalo bulls at weekly intervals for 1 year and evaluated for routine parameters, motion characteristics, reactivity in hypoosmotic solution, and acrosomal and other morphological abnormalities of the spermatozoa. The overall motility (MOT), straight line velocity (VSL), curvilinear velocity (VCL), linearity (LIN), lateral head displacement (ALH) and average path velocity (VAP) were 66.85+/-2.79%, 26.58+/-0.24 and 107.07+/-1.47 microm/s, 26.91+/-0.01%, 11.19+/-0.09 and 61.78+/-2.79 microm/s, respectively. Significant seasonal variation was observed in sperm kinematics and hypoosmotic swelling (HOS) reactivity. Except for LIN, the mean values of sperm dynamics were higher during summer and rainy season and significantly lower in winter season. Sperm kinematics showed significant (P<0.01) positive correlation (r=0.25-0.60) with plasmallemal integrity. Ejaculates with less than 50% HOS-reactive spermatozoa had significantly lowered MOT, VSL, VCL and VAP as compared to the ejaculates with >50% HOS-positive spermatozoa. No significant difference was observed in sperm kinematics among the ejaculates having 50-70% and >70% HOS-reactive spermatozoa. The trend of motion dynamics of the spermatozoa with respect to HOS reactivity was similar in all the three seasons (summer, rainy and winter). The results indicate that ejaculates having more than 50% of HOS-reactive sperm show a higher magnitude of sperm kinematics compared to ejaculates having less than 50% HOS-positive spermatozoa.  相似文献   

16.
The supplementation of the freezing diluent with 3 amino acids (glutamine, proline and histidine) and 1 amino acid-related compound (betaine) in preserving stallion spermatozoa diluted in INRA82 extender containing 2.5% (v/v) glycerol and 2% (v/v) egg yolk (control extender) during freezing and thawing was studied at 0, 40, 80, 120 and 160 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 1). Glutamine and proline were studied at 0, 10, 20, 30, 40, 50, 60, 70 and 80 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 2). In each experiment, spermatozoa were evaluated after thawing by computer automated sperm analyzer. The percentage of motile spermatozoa (faster than 30 microns/sec) was assessed. In addition, the velocity of the average path (VAP), the straight line velocity (VSL), the curvilinear velocity (VCL) and the amplitude of the lateral head displacement (ALH) were also measured. In Experiment 1, only glutamine (40 mM) significantly improved sperm motility (56.0% +/- 3.0 vs 49.7% +/- 1.6; P < 0.05) compared with the control extender, while velocities were unaffected at concentrations of 40 to 120 mM. However, at 160 mM, a significant decrease in motility and velocity was observed for all amino acids. In Experiment 2, motility in glutamine (range 41.1% +/- 3.8%; 42.4% +/- 3.6) and proline (43.0% +/- 3.7; 45.6% +/- 3.8) extenders compared with the control (34.7% +/- 1.6) was improved significantly (P < 0.05). Sperm velocity was improved at concentrations higher than 40 mM glutamine and 50 mM proline.  相似文献   

17.
Bovine spermatozoa from five bulls (158 ejaculates) were collected into one-piece combination liner-collection cones in an artificial vagina. Spermatozoal motility and differential staining were evaluated at each sequential step of semen processing. Linear 30-min and nonlinear 150-min cooling profiles resulted in equivalent postthaw spermatozoan survival rates. Preglycerolation holding times of 60 and 150 min, after 30-min linear cooling, were associated with increased, but nonsignificant, postthaw survival rates for bovine spermatozoa collected in polyethylene liner-collection cones. Highly significant differences (P<0.0001) were found to be associated with the composition of the liner-collection cones used. Motility estimates made at collection and after thawing from liquid nitrogen storage indicated that at least 50% of motile spermatozoa collected in polyethylene liner-collection cones survived; whereas, not more than 30% of the cells survived when they had been collected in rubber liner-collection cones.  相似文献   

18.
Three ejaculates from each of eight stallions were subjected to cryopreservation in a milk/egg yolk-based freezing extender or an egg yolk-based freezing extender. Semen was exposed to a fast prefreeze cooling rate (FAST; semen immediately subjected to cryopreservation) or a slow prefreeze cooling rate (SLOW; semen pre-cooled at a controlled rate for 80 min prior to cryopreservation). Postthaw semen was diluted in initial freezing medium (FM) or INRA 96 (IMV Technologies, L'Aigle, France) prior to analysis of 10 experimental end points: total motility (MOT; %), progressive motility (PMOT; %), curvilinear velocity (VCL; μm/s), linearity (LIN; %), intact acrosomal and plasma membranes (AIMI; %), intact acrosomal membranes (AI; %), intact plasma membranes (MI; %), and DNA quality. Eight of 10 experimental endpoints (MOT, PMOT, average-path velocity [VAP], mean straight-line velocity [VSL], LIN AIMI, AI, and MI) were affected by extender type, with egg yolk-based extender yielding higher values than milk/egg yolk-based extender (P < 0.05). Exposure of extended semen to a slow prefreeze cooling period resulted in increased values for six of eight endpoints (MOT, PMOT, VCL, AIMI, AI, and MI), as compared with a fast prefreeze cooling period (P < 0.05). As a postthaw diluent, INRA 96 yielded higher mean values than FM for MOT, PMOT, VCL, average-path velocity, and mean straight-line velocity (P < 0.05). Treatment group FM yielded slightly higher values than INRA 96 for LIN and MI (P < 0.05). In conclusion, a slow prefreeze cooling rate was superior to a fast prefreeze cooling rate, regardless of freezing extender used, and INRA 96 served as a satisfactory postthaw diluent prior to semen analysis.  相似文献   

19.
The objective was to investigate the changes in stallion sperm quality (sperm motility, viability, membrane integrity and chromatin integrity) occurring during cool storage, and to study the effect of sperm selection by single layer colloidal centrifugation on these parameters of sperm quality. Spermatozoa from 3 stallions (10 ejaculates, 3–4 per stallion) were selected by centrifugation through a single layer of colloid (SLC). The resulting sperm preparations and the control samples (extended but unselected semen samples) were stored at 5 °C for 48 h. Assessments of sperm quality, such as sperm motility, viability (SYBR-14/PI staining), membrane stability (Annexin-V/PI staining) and chromatin integrity, were performed on aliquots of the selected sperm preparations and unselected samples on the day of collection (3 h) and after 24 and 48 h of storage. In the SLC-selected sperm samples, sperm motility, sperm viability, proportions of spermatozoa with normal morphology and with intact chromatin were significantly better than in unselected samples (motility: 77 ± 4% vs. 64 ± 8% at 3 h; P < 0.001; viability: 79.5 ± 9% vs. 64.7 ± 9%, P < 0.001; normal morphology 89 ± 6% vs. 69 ± 9%; chromatin integrity DFI 11.3 ± 5% vs. 22.1 ± 10%). Membrane stability, however, was not different in the SLC-selected and unselected samples (74.6 ± 8% vs. 69.3 ± 8%). The deterioration seen in sperm quality in the unselected samples was prevented by SLC, so that sperm viability, membrane stability and chromatin integrity were unchanged in the selected samples by 48 h compared to 3 h (P < 0.001), whereas the unselected samples were significantly worse by 48 h (P < 0.001). Furthermore, it should be possible to send an aliquot of a normal insemination dose (i.e. unselected spermatozoa) overnight to a reference laboratory for analysis of both plasma membrane and chromatin integrity. In conclusion, centrifugation of stallion spermatozoa through a single layer of colloid is a useful technique for selecting the best spermatozoa from an ejaculate and, moreover, sperm quality is maintained during storage.  相似文献   

20.
《Biotechnic & histochemistry》2013,88(3-4):181-193
Abstract

Motility is an essential characteristic of all flagellated spermatozoa and assessment of this parameter is one criterion for most semen or sperm evaluations. Computer-aided sperm analysis (CASA) can be used to measure sperm motility more objectively and accurately than manual methods, provided that analysis techniques are standardized. Previous studies have shown that evaluation of sperm subpopulations is more important than analyzing the total motile sperm population alone. We developed a quantitative method to determine cut-off values for swimming speed to identify three sperm subpopulations. We used the Sperm Class Analyzer® (SCA) CASA system to assess the total percentage of motile spermatozoa in a sperm preparation as well as the percentages of rapid, medium and slow swimming spermatozoa for six mammalian species. Curvilinear velocity (VCL) cut-off values were adjusted manually for each species to include 80% rapid, 15% medium and 5% slow swimming spermatozoa. Our results indicate that the same VCL intervals cannot be used for all species to classify spermatozoa according to swimming speed. After VCL intervals were adjusted for each species, three unique sperm subpopulations could be identified. The effects of medical treatments on sperm motility become apparent in changes in the distribution of spermatozoa among the three swimming speed classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号