首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell entry of Simian Virus 40 (SV40) involves caveolar/lipid raft-mediated endocytosis, vesicular transport to the endoplasmic reticulum (ER), translocation into the cytosol, and import into the nucleus. We analyzed the effects of ER-associated processes and factors on infection and on isolated viruses and found that SV40 makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI, as well as the retrotranslocation proteins Derlin-1 and Sel1L. ERp57 isomerizes specific interchain disulfides connecting the major capsid protein, VP1, to a crosslinked network of neighbors, thus uncoupling about 12 of 72 VP1 pentamers. Cryo-electron tomography indicated that loss of interchain disulfides coupled with calcium depletion induces selective dissociation of the 12 vertex pentamers, a step likely to mimic uncoating of the virus in the cytosol. Thus, the virus utilizes the protein folding machinery for initial uncoating before exploiting the ER-associated degradation machinery presumably to escape from the ER lumen into the cytosol.  相似文献   

2.
Protein disulfide isomerase (PDI, ERp59), ERp72, and ERp61 are luminal proteins of the endoplasmic reticulum (ER) that are characterized by the presence of sequences corresponding to the active site regions of PDI. Each one of these proteins possesses a different COOH-terminal tetrapeptide ER retention signal. In order to investigate what other tetrapeptide sequences could serve as retention signals and to determine to what extent the function of the retention signal is modulated by the protein carrying the signal, we have constructed a set of mutants of two of these resident ER proteins, PDI and ERp72. In each of these proteins, the wild type tetrapeptide sequences were replaced by each member of the set of the 12 possible combinations consisting of (K,R,Q)-(D,E)-(D,E)-L. Analysis of the efficiency of retention of the variant proteins when each was transiently expressed in COS cells showed that the retention efficiencies vary with both the COOH-terminal sequence and with the protein that carries this sequence.  相似文献   

3.
Expression of the glucose-regulated proteins (GRPs), GRP78 and GRP94, is induced by a variety of stress conditions including treatment of cells with tunicamycin or the calcium ionophore A23187. The stimulus for induction of these resident endoplasmic reticulum (ER) proteins appears to be accumulation of misfolded or underglycosylated protein within the ER. We have studied the induction of mRNAs encoding two other resident ER proteins, ERp72 and protein disulfide isomerase (PDI), during the stress response in Chinese hamster ovary cells. ERp72 shares amino acid sequence homology with PDI within the presumed catalytic active sites. ERp72 mRNA and, to a lesser degree, PDI mRNA were induced by treatment of Chinese hamster ovary cells with tunicamycin or A23187. These results identify ERp72 as a member of the GRP family. Stable high level overproduction of ERp72 or PDI from recombinant expression vectors did not alter the constitutive or induced expression of other GRPs. High level overexpression resulted in secretion of the overproduced protein specifically but not other resident ER proteins. This suggests that the ER retention mechanism is mediated by more specific interactions than just KDEL sequence recognition.  相似文献   

4.
Endoplasmic reticulum (ER)p61, ERp72, and protein disulfide isomerase (PDI), which are members of the PDI family protein, are ubiquitously present in mammalian cells and are thought to participate in disulfide bond formation and isomerization. However, why the 3 different members need to be colocalized in the ER remains an enigma. We hypothesized that each PDI family protein might have different modes of enzymatic activity in disulfide bond formation and isomerization. We purified PDI, ERp61, and ERp72 proteins from rat liver microsomes and compared the effects of each protein on the folding of bovine pancreatic trypsin inhibitor (BPTI). ERp61 and ERp72 accelerated the initial steps more efficiently than did PDI. ERp61 and ERp72, however, accelerated the rate-limiting step less efficiently than did PDI. PDI or ERp72 did not impede the folding of BPTI by each other but rather catalyzed the folding reaction cooperatively with each other. These data suggest that differential enzymatic activities of ERp proteins and PDI represent a complementary contribution of these enzymes to protein folding in the ER.  相似文献   

5.
We have cloned, sequenced, and expressed full length cDNA clones encoding two abundant, luminal endoplasmic reticulum proteins (ERp), ERp59/PDI and ERp72. ERp59/PDI has been identified as the microsomal enzyme protein disulfide isomerase (PDI). An analysis of the amino acid sequence of ERp72 showed that it shared sequence identity with ERp59/PDI at three discrete regions, having three copies of the sequences that are thought to be the CGHC-containing active sites of ERp59/PDI. Thus, ERp72 appears to be a newly described member of the family of CGHC-containing proteins. ERp59/PDI has the sequence KDEL at its COOH terminus while ERp72 has the related sequence KEEL. Removal of the KDEL of ERp59/PDI or the KEEL of ERp72 by in vitro mutagenesis techniques and subsequent analysis of the mutants in transient expression assays, showed that both sequences are endoplasmic reticulum retention signals for their respective proteins. The most dramatic difference in secretion between the wild type and the mutant forms of the protein was seen in the case of ERp72.  相似文献   

6.
Endoplasmic reticulum (ER)-to-cytosol membrane transport is a decisive infection step for the murine polyomavirus (Py). We previously determined that ERp29, a protein disulfide isomerase (PDI) member, extrudes the Py VP1 C-terminal arm to initiate ER membrane penetration. This reaction requires disruption of Py's disulfide bonds. Here, we found that the PDI family members ERp57, PDI, and ERp72 facilitate virus infection. However, while all three proteins disrupt Py's disulfide bonds in vitro, only ERp57 and PDI operate in concert with ERp29 to unfold the VP1 C-terminal arm. An alkylated Py cannot stimulate infection, implying a pivotal role of viral free cysteines during infection. Consistent with this, we found that although PDI and ERp72 reduce Py, ERp57 principally isomerizes the virus in vitro, a reaction that requires viral free cysteines. Our mutagenesis study subsequently identified VP1 C11 and C15 as important for infection, suggesting a role for these residues during isomerization. C11 and C15 also act together to stabilize interpentamer interactions for a subset of the virus pentamers, likely because some of these residues form interpentamer disulfide bonds. This study reveals how a PDI family functions coordinately and distinctly to promote Py infection and pinpoints a role of viral cysteines in this process.  相似文献   

7.
To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative folding because its depletion delayed disulfide formation in all secretory proteins tested. However, the phenotype was surprisingly modest suggesting that other family members are able to compensate for PDI depletion, albeit with reduced efficacy. ERp57 also exhibited broad specificity, overlapping with that of PDI, but with preference for glycosylated substrates. Depletion of both PDI and ERp57 revealed that some substrates require both enzymes for optimal folding and, furthermore, led to generalized protein misfolding, impaired export from the ER, and degradation. In contrast, depletion of ERp72 or P5, either alone or in combination with PDI or ERp57 had minimal impact, revealing a narrow substrate specificity for ERp72 and no detectable role for P5 in oxidative protein folding.  相似文献   

8.
Oxidation and folding of secretory proteins in the endoplasmic reticulum (ER) depends on the presence of chaperones and oxidoreductases. Two of the oxidoreductases present in the ER of mammalian cells are protein disulfide isomerase (PDI) and ERp57. In this study, we investigated the influence of ERp57 on the in vitro reoxidation and refolding of an antibody Fab fragment. Our results show that ERp57 shares functional properties with PDI and that both are clearly different from other oxidoreductases. The reactivation of the denatured and reduced Fab fragment was enhanced significantly in the presence of ERp57 with kinetics and redox dependence of the reactivation reaction comparable to those obtained for PDI. These properties were not influenced by the presence of calnexin. Furthermore, whereas PDI cooperates with the immunoglobulin heavy chain binding protein (BiP), no synergistic effect could be observed for BiP and ERp57. These results indicate that the cooperation of the two oxidoreductases with different partner proteins may explain their different roles in the folding of proteins in the ER.  相似文献   

9.
Membrane penetration of nonenveloped viruses is a poorly understood process. We have investigated early stages of this process by studying the conformational change experienced by polyomavirus (Py) in the lumen of the endoplasmic reticulum (ER), a step that precedes its transport into the cytosol. We show that a PDI-like protein, ERp29, exposes the C-terminal arm of Py's VP1 protein, leading to formation of a hydrophobic particle that binds to a lipid bilayer; this reaction likely mimics initiation of Py penetration across the ER membrane. Expression of a dominant-negative ERp29 decreases Py infection, indicating ERp29 facilitates viral infection. Interestingly, cholera toxin, another toxic agent that crosses the ER membrane into the cytosol, is unfolded by PDI in the ER. Our data thus identify an ER factor that mediates membrane penetration of a nonenveloped virus and suggest that PDI family members are generally involved in ER remodeling reactions.  相似文献   

10.
The toxic effect of cholera toxin (CT) on target cells is caused by its A1 chain. This polypeptide is released from the holotoxin and unfolded in the lumen of the ER by the action of protein disulfide isomerase (PDI), before being retrotranslocated into the cytosol. The polypeptide is initially unfolded by binding to the reduced form of PDI. We show that upon oxidation of the COOH-terminal disulfide bond in PDI by the enzyme Ero1, the A1 chain is released. Both yeast Ero1 and the mammalian Ero1alpha isoform are active in this reaction. Ero1 has a preference for the PDI-toxin complex. We further show that the complex is transferred to a protein at the lumenal side of the ER membrane, where the unfolded toxin is released from PDI by the action of Ero1. Taken together, our results identify Ero1 as the enzyme mediating the release of unfolded CT from PDI and characterize an additional step in retrotranslocation of the toxin.  相似文献   

11.
Lectin chaperone calreticulin is well known to interact with ERp57 which is one of PDI family proteins. The interaction of ERp57 with calreticulin is believed to assist disulfide bond formation of nascent glycoprotein in the ER. Various kinds of PDI family proteins are present in the ER, however, their precise roles have been unclear. In this study, interaction assay between PDI family proteins and calreticulin by SPR analysis was performed. Our analysis revealed for the first time formation of a 1:1 complex between ERp29 and calreticulin. The dissociation constant of interaction between ERp29 and calreticulin was shown to be almost identical to ERp57–calreticulin interaction. We speculate that the recognition site of ERp29 within calreticulin is different from that of ERp57.  相似文献   

12.
In the endoplasmic reticulum (ER), members of the protein disulfide isomerase (PDI) family perform critical functions during protein maturation. Herein, we identify the previously uncharacterized PDI-family member ERp90. In cultured human cells, we find ERp90 to be a soluble ER-luminal glycoprotein that comprises five potential thioredoxin (Trx)-like domains. Mature ERp90 contains 10 cysteine residues, of which at least some form intramolecular disulfides. While none of the Trx domains contain a canonical Cys-Xaa-Xaa-Cys active-site motif, other conserved cysteines could endow the protein with redox activity. Importantly, we show that ERp90 co-immunoprecipitates with ERFAD, a flavoprotein involved in ER-associated degradation (ERAD), through what is most likely a direct interaction. We propose that the function of ERp90 is related to substrate recruitment or delivery to the ERAD retrotranslocation machinery by ERFAD.  相似文献   

13.
Protein disulfide isomerases (PDIs) are responsible for catalyzing the proper oxidation and isomerization of disulfide bonds of newly synthesized proteins in the endoplasmic reticulum (ER). The ER contains many different PDI-like proteins. Some, such as PDI, are general enzymes that directly recognize misfolded proteins while others, such as ERp57 and ERp72, have more specialized roles. Here, we report the high-resolution X-ray crystal structure of the N-terminal portion of ERp72 (also known as CaBP2 or PDI A4), which contains two a0a catalytic thioredoxin-like domains. The structure shows that the a0 domain contains an additional N-terminal β-strand and a different conformation of the β5-α4 loop relative to other thioredoxin-like domains. The structure of the a domain reveals that a conserved arginine residue inserts into the hydrophobic core and makes a salt bridge with a conserved glutamate residue in the vicinity of the catalytic site. A structural model of full-length ERp72 shows that all three catalytic sites roughly face each other and positions the adjacent hydrophobic patches that are likely involved in protein substrate binding.  相似文献   

14.
The A1 chain of the cholera toxin (CT) undergoes retrotranslocation to the cytosol across the endoplasmic reticulum (ER) membrane by hijacking ER-associated degradation (ERAD). In the cytosol the CT A1 chain stimulates adenylyl cyclase. The VCP(Ufd1-Npl4) complex mediates retrotranslocation of emerging ER proteins. While one group reported that VCP is required for CT retrotranslocation, another group concluded the opposite. We show that VCP is dispensable for CT retrotranslocation, however RNAi of either Ufd1 or Npl4 induces an increase in adenylyl cyclase activity induced by CT. RNAi of VCP, Ufd1 or Npl4 did not affect adenylyl cyclase activity induced by forskolin. These findings are coherent with our previous report showing that depletion of Ufd1-Npl4 accelerates ERAD of reporter substrates. To integrate contradictory results we propose a new model, where Ufd1-Npl4 is a negative regulator of retrotranslocation, delaying the retrotranslocation of ERAD substrates independently of its association with VCP.  相似文献   

15.
We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436–445, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Secretory proteins become folded and acquire stabilizing disulfide bonds in the endoplasmic reticulum (ER). Correct disulfide bond formation is a key step in ER quality control (ERQC). Proteins with incorrect disulfide bonds are recognized by the quality control machinery and are retrotranslocated into the cytosol where they are degraded by the proteasome. The mammalian ER contains 17 disulfide isomerases and at least one of them, ERp57, works in conjunction with the ER lectin-like chaperones calnexin and calreticulin. The targeting of ERp57 to calnexin-calreticulin is mediated by its noncatalytic b' domain, and analogous domains in other disulfide isomerases likely determine their substrate and partner preferences. This review discusses some explanations for the multiplicity of disulfide isomerases and highlights structural differences in the b' domains of PDI and ERp57 as an example of how noncatalytic domains define specialized roles in oxidative folding.  相似文献   

17.
18.
Protein disulfide isomerase (PDI)-like proteins act as oxido-reductases and chaperones in the endoplasmic reticulum (ER). How oligomerization of the PDI-like proteins control these activities is unknown. Here we show that dimerization of ERp29, a PDI-like protein, regulates its protein unfolding and escort activities. We have demonstrated previously that ERp29 induces the local unfolding of polyomavirus in the ER, a step required for viral infection. We now find that, in contrast to wild-type ERp29, a mutant ERp29 (D42A) that dimerizes inefficiently is unable to unfold polyomavirus or stimulate infection. A compensatory mutation that partially restores dimerization to the mutant ERp29 (G37D/D42A) rescues ERp29 activity. These results indicate that dimerization of ERp29 is crucial for its protein unfolding function. ERp29 was also suggested to act as an escort factor by binding to the secretory protein thyroglobulin (Tg) in the ER, thereby facilitating its secretion. We show that this escort function likewise depends on ERp29 dimerization. Thus our data demonstrate that dimerization of a PDI-like protein acts to regulate its diverse ER activities.  相似文献   

19.
Ca2+ regulation of interactions between endoplasmic reticulum chaperones   总被引:4,自引:0,他引:4  
Casade Blue (CB), a fluorescent dye, was used to investigate the dynamics of interactions between endoplasmic reticulum (ER) lumenal chaperones including calreticulin, protein disulfide isomerase (PDI), and ERp57. PDI and ERp57 were labeled with CB, and subsequently, we show that the fluorescence intensity of the CB-conjugated proteins changes upon exposure to microenvironments of a different polarity. CD analysis of the purified proteins revealed that changes in the fluorescence intensity of CB-ERp57 and CB-PDI correspond to conformational changes in the proteins. Using this technique we demonstrate that PDI interacts with calreticulin at low Ca2+ concentration (below 100 microM), whereas the protein complex dissociates at >400 microM Ca2+. These are the Ca2+ concentrations reminiscent of Ca2+ levels found in empty or full ER Ca2+ stores. The N-domain of calreticulin interacts with PDI, but Ca2+ binding to the C-domain of the protein is responsible for Ca2+ sensitivity of the interaction. ERp57 also interacts with calreticulin through the N-domain of the protein. Initial interaction between these proteins is Ca2+-independent, but it is modulated by Ca2+ binding to the C-domain of calreticulin. We conclude that changes in ER lumenal Ca2+ concentration may be responsible for the regulation of protein-protein interactions. Calreticulin may play a role of Ca2+ "sensor" for ER chaperones via regulation of Ca2+-dependent formation and maintenance of structural and functional complexes between different proteins involved in a variety of steps during protein synthesis, folding, and post-translational modification.  相似文献   

20.
For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides from the cytosol into the ER. Tapasin promotes the assembly of MHC class I molecules with peptides. The formation of disulfide‐linked conjugates of tapasin with ERp57 is suggested to be crucial for tapasin function. Important functional roles are also suggested for the tapasin transmembrane and cytoplasmic domains, sites of tapasin interaction with TAP. We show that interactions of tapasin with both TAP and ERp57 are correlated with strong MHC class I recruitment and assembly enhancement. The presence of the transmembrane/cytosolic regions of tapasin is critical for efficient tapasin–MHC class I binding in interferon‐γ‐treated cells, and contributes to an ERp57‐independent mode of MHC class I assembly enhancement. A second ERp57‐dependent mode of tapasin function correlates with enhanced MHC class I binding to tapasin and calreticulin. We also show that PDI binds to TAP in a tapasin‐independent manner, but forms disulfide‐linked conjugates with soluble tapasin. Thus, full‐length tapasin is important for enhancing recruitment of MHC class I molecules and increasing specificity of tapasin–ERp57 conjugation. Furthermore, tapasin or the TAP/tapasin complex has an intrinsic ability to recruit MHC class I molecules and promote assembly, but also uses generic folding factors to enhance MHC class I recruitment and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号