首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Heterogeneous nuclear RNA-ribonucleoprotein (hnRNP) fractions were isolated from Friend erythroleukemia cells and separated by 15-45% sucrose gradient centrifugation. The distribution of small nuclear RNAs (snRNAs) in hnRNP fractions indicated that the snRNAs are associated with hnRNP particles. HnRNP fractions were incubated with normal IgG or anti-U1 RNP IgG, and the resulting immunocomplexes were isolated by binding to a protein A-Sepharose column. HnRNP was found in bound fractions only when anti-U1 RNP IgG was used. By Northern hybridization of RNA extracted from the immunocomplexes with a beta-globin genomic DNA probe, 15S beta-globin mRNA precursors and 10S mature mRNA were detected. These findings suggest the existence of a complex of U1 RNP particles and hnRNP particles containing beta-globin pre-mRNA.  相似文献   

2.
Newly transcribed heterogeneous nuclear RNA (hnRNA) in the eucaryote cell nucleus is bound by proteins, giving rise to large ribonucleoprotein (RNP) fibrils with an inherent substructure consisting largely of relatively homogeneous approximately 20-nm 30S particles, which contain core polypeptides of 34,000-38,000 mol wt. To determine whether this group of proteins was sufficient for the assembly of the native beaded nucleoprotein structure, we dissociated 30S hnRNP purified from mouse ascites cells into their component proteins and RNA by treatment with the ionic detergent sodium deoxycholate and then reconstituted this complex by addition of Triton X-100 to sequester the deoxycholate. Dissociation and reassembly were assayed by sucrose gradient centrifugation, monitoring UV absorbance, protein composition, and radiolabeled nucleic acid, and by electron microscopy. Endogenous RNA was digested and reassembly of RNP complexes carried out with equivalent amounts of exogenous RNA or single-stranded DNA. These complexes are composed exclusively of groups of n 30S subunits, as determined by sucrose gradient and electron microscope analysis, where n is the length of the added nucleic acid divided by the length of nucleic acid bound by one native 30S complex (about 1,000 nucleotides). When the nucleic acid: protein stoichiometry in the reconstitution mixture was varied, only complexes composed of 30S subunits were formed; excess protein or nucleic acid remained unbound. These results strongly suggest that core proteins determine the basic structural properties of 30S subunits and hence of hnRNP. In vitro construction of RNP complexes using model nucleic acid molecules should prove useful to the further study of the processing of mRNA.  相似文献   

3.
4.
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer-dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion-- reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H-U1 snRNP complex into a splicing enhancer.  相似文献   

5.
6.
Hybridomas secreting monoclonal antibodies that react with heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins have been isolated by immunizing BALB/c mice with RNP particles isolated from chicken and screening the fusion products with mouse RNP complexes. The antibodies show varying affinities for the hnRNP core proteins that have been blotted onto nitrocellulose. The majority of the immunoglobulins react with all the core group proteins although several recognize subsets of the hnRNP polypeptides. The clones are specific for different antigenic determinants as shown by their inability to compete with one another for binding sites. A mild proteolytic digestion of hnRNP proteins generates fragments that have uniformly lost 12 kDa and contain the antigenic determinants recognized by several of the monoclonal antibodies. Thus, it appears the core proteins comprise a family of related polypeptides possessing underlying structural similarities. Polypeptides similar in number and molecular weights that have antigenic determinants cross-reactive with those of mouse RNP have been found in a number of organisms, thereby emphasizing their possible common structure and function in higher eukaryotes. No difference in the distribution within the cell of individual or groups of core proteins has so far been detected by indirect immunofluorescence.  相似文献   

7.
Much attention is currently being devoted to questions of protein and RNA tertiary structures and to the quaternary arrangement of the individual macromolecules in ribonucleoprotein (RNP) particles. In this article we describe two complementary strategies that allow the identification of RNA-protein contact sites in assembled, nonlabeled RNP particles after UV crosslinking. The first combines immunoprecipitation of UV-irradiated RNP particles under mildly denaturing conditions followed by primer-extension analysis of the crosslinked (and thus coprecipitated) RNA. The second involves the purification of crosslinked peptide-oligonucleotide from RNP particles and the subsequent analysis of the crosslinked peptide and RNA by Edman degradation and matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), respectively. Although the first approach provides a rapid method for the exact identification of RNA-protein contact sites in purified nonlabeled RNP particles, the latter adds valuable information about potential RNA binding domains within proteins and, thus, about the arrangement of these proteins within the quaternary structures of complex RNP assemblies. Recently, we applied both these strategies successfully to native purified spliceosomal RNP. These methods may be generally applicable to the analysis of RNP complexes, especially as they avoid labeling and reconstitution, both of which risk introducing artifacts.  相似文献   

8.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

9.
Heterogeneous nuclear RNA and polyribosomal messenger RNA are both complexed with specific sets of proteins in the cell, forming ribonucleoprotein complexes known as hnRNP and mRNP, respectively. In the present investigation, the nucleoprotein structures of globin mRNA sequences in hnRNP and mRNP were probed by digestion with nuclease, under conditions in which RNA-protein rearrangements were shown not to occur. Mild digestion with pancreatic RNAase of a Friend erythroleukemia cell RNP fraction containing both hnRNP and mRNP resulted in a preferential depletion of globin mRNA-homologous sequences, as measured by hybridization of the surviving RNA with globin complementary DNA. Hypersensitivity to nuclease typifies 65% of the globin mRNA-homologous sequences, with the other 35% remaining relatively nuclease-resistant. Removal of polyribosomal mRNP by release with EDTA, followed by re-isolation of hnRNP on a sucrose gradient eliminated the nuclease-hypersensitive class of globin mRNA sequences in favor of the relatively nuclease-resistant class. These results suggest that mRNA sequences are more nuclease-sensitive in polyribosomal mRNP than they are in nuclear hnRNP particles. The implication is that mRNA sequences undergo a significant change in RNP structure at some point during their movement from nucleus to cytoplasm.  相似文献   

10.
A rapid three step procedure is described for the purification of C protein from HeLa 40 S hnRNP particles. The procedure takes advantage of the salt resistant RNA binding of C protein, the size of the C protein-RNA complex, and the strong binding of C protein to an anion-exchange resin. Typically 120 micrograms of C protein is obtained from 4.0 X 10(9) cells with greater than 95% electrophoretic purity. Proteins C1 and C2 copurify in the ratio of 3.5 Cl to 1 C2. The purified C protein participates in hnRNP particle reconstitution and on this basis is judged to be native. The purified C protein binds to a gel filtration matrix at 0.5 M NaCl but at higher salt concentrations it elutes before the marker protein, apoferritin (Mr = 443,000). An abbreviated two step purification procedure utilizing anion-exchange chromatography is also described. This procedure results in relatively pure C protein, as well as a useful separation of the other hnRNP proteins.  相似文献   

11.
U1 small nuclear RNA is thought to be involved in messenger RNA splicing by binding to complementary sequences in pre-mRNA. We have investigated intermolecular base-pairing between pre-mRNA (hnRNA) and U1 small nuclear RNA by psoralen crosslinking in situ, with emphasis on ribonucleoprotein structure. HeLa cells were pulse-labeled with [3H]uridine under conditions in which hnRNA is preferentially labeled. Isolated nuclei were treated with aminomethyltrioxsalen , which produces interstrand crosslinks at sites of base-pairing between hnRNA and U1 RNA. hnRNA-ribonucleoprotein (hnRNP) particles were isolated in sucrose gradients containing 50% formamide, to dissociate non-crosslinked U1 RNA, and then analyzed by immunoaffinity chromatography using a human autoantibody that is specific for the ribonucleoprotein form of U1 RNA (anti-U1 RNP). After psoralen crosslinking, pulse-labeled hnRNA in hnRNP particles reproducibly bound to anti-U1 RNP. The amount of hnRNA bound to anti-U1 RNP was reduced 80 to 85% when psoralen crosslinking of nuclei was omitted, or if the crosslinks between U1 RNA and hnRNA were photo-reversed prior to immunoaffinity chromatography. Analysis of the proteins bound to anti-U1 RNP after crosslink reversal revealed polypeptides having molecular weights similar to those previously described for U1 RNP. These proteins did not bind to control, non-immune human immunoglobulin G. These results indicate that the subset of nuclear U1 RNA that is base-paired with hnRNA at a given time in the cell is a ribonucleoprotein. This raises the possibility that these proteins, as well as U1 RNA itself, may participate in pre-mRNA splice site recognition by U1 RNP.  相似文献   

12.
The organization of select proteins within ribonucleoprotein particles containing heterogeneous nuclear and uridine-rich small nuclear RNAs (hnRNP and UsnRNP respectively) was examined by chemical cross-linking and ribonuclease digestion using diagonal two dimensional PAGE and immunoblotting detection systems. Monoclonal antibodies specific for A2, C1 and C2 hnRNP proteins, detected these proteins at gel coordinates which suggested homotypic dimers and trimers of A2 and homotypic trimers, hexamers and larger multimers of C1 and C2. Ribonuclease digestion did not alter the cross-linking properties of hnRNP C1 and C2 proteins but did result in loss of A2 homotypic dimers and trimers. Blots simultaneously reacted with hnRNP specific monoclonal antibodies and autoimmune patient serum (RNP/Sm), or monoclonal antibodies reactive with the U1 hnRNP specific 63 kDa protein and/or the UsnRNP common proteins B, B and D revealed no complexes which would indicate interactions between hnRNPs and UsnRNPs. The U1 UsnRNP specific 63 kDa protein appeared not to be cross-linked to UsnRNP common B,B and D proteins. The data also suggested that UsnRNP common protein D was cross-linkable to UsnRNP common proteins D, E and G but not to B and B. The cross-linking properties of D were unaffected by ribonuclease digestion. In contrast, ribonuclease digestion resulted in an inability to cross-link select complexes containing either B and B, or p63. The data suggest that both hnRNPs and UsnRNPs are comprised of RNA-dependent and RNA-independent protein-protein interactions.Abbreviations RNP Ribonucleoprotein particle - UsnRNP RNP containing uridine rich small nuclear RNA - hnRNP RNP containing heterogeneous nuclear RNA - PMSF Phenylmethylsulfonyl Fluoride - TEO Triethanolamine - EDTA Ethylenediaminetetra Acetic Acid - DTT Dithiothreitol - NEM N-Ethylmaleimide - DTBP Dimethyl 3,3-Dithiobis Propionimidate - ITH 2-Iminothiolane - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - SLE Systemic Lupus Erythematosus  相似文献   

13.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are spliceosomal macromole-cular assemblages and thus actively participate in pre-mRNA metabolism. They are composed of evolutionarily conserved and tandemly repeated motifs, where both RNA-binding and protein-protein recognition occur to achieve cellular activities. By yet unknown mechanisms, these ribonucleoprotein (RNP) particles are  相似文献   

14.
Two structurally distinct RNP complexes (MI and MII), each with a sedimentation value of approx. 40S, were isolated from rat liver nuclear extracts by sucrose gradient centrifugation and subsequent native gel electrophoresis of the 40S hnRNP-containing fractions. MII RNP contained the bulk of hnRNA and hnRNP proteins (i.e. the 32-45KD core proteins and polypeptides of 60-80 and 110-130KD). MI RNP was characterized by the exclusive presence of U-snRNAs (U1, U2, U4, U5 and U6), their well known snRNP polypeptides and a number of Sm-associated proteins in the range of 50-210KD. Immunoselection experiments employing a monoclonal antibody with an established specificity for the U2-snRNP-specific B" polypeptide proved that the RNA and protein components characteristic of MI were part of a single multi-snRNP unit. The prominent 200/210KD protein doublet of MI was identified immunochemically as the rat homologue of the yeast PRP8 protein, a known U5-associated splicing component. Based on the major biochemical and immunochemical features of MI and MII RNP complexes, we conclude that MII represents the monomeric 40S hnRNP structure, whereas MI defines a novel multi-snRNP entity.  相似文献   

15.
16.
Three new members of the RNP protein family in Xenopus.   总被引:2,自引:0,他引:2       下载免费PDF全文
Many RNP proteins contain one or more copies of the RNA recognition motif (RRM) and are thought to be involved in cellular RNA metabolism. We have previously characterized in Xenopus a nervous system specific gene, nrp1, that is more similar to the hnRNP A/B proteins than to other known proteins (K. Richter, P. J. Good, and I. B. Dawid (1990), New Biol. 2, 556-565). PCR amplification with degenerate primers was used to identify additional cDNAs encoding two RRMs in Xenopus. Three previously uncharacterized genes were identified. Two genes encode hnRNP A/B proteins with two RRMs and a glycine-rich domain. One of these is the Xenopus homolog of the human A2/B1 gene; the other, named hnRNP A3, is similar to both the A1 and A2 hnRNP genes. The Xenopus hnRNP A1, A2 and A3 genes are expressed throughout development and in all adult tissues. Multiple protein isoforms for the hnRNP A2 gene are predicted that differ by the insertion of short peptide sequences in the glycine-rich domain. The third newly isolated gene, named xrp1, encodes a protein that is related by sequence to the nrp1 protein but is expressed ubiquitously. Despite the similarity to nuclear RNP proteins, both the nrp1 and xrp1 proteins are localized to the cytoplasm in the Xenopus oocyte. The xrp1 gene may have a function in all cells that is similar to that executed by nrp1 specifically within the nervous system.  相似文献   

17.
18.
A heterogeneous RNP structure has been isolated from rat liver nuclei by a method previously used for the isolation of 30S RNP complexes carrying heterogeneous RNA (hnRNA) [1]. The RNP sediments in sucrose gradients with s-values of 70-110S. Formaldehyde-fixed preparations band at Q = 1.40 in isopycnic CsCl gradients. The RNP structure is composed of a heterogeneous population of polypeptides, prominent among which are two proteins with Mr 74000 and 72000. It contains both rapidly labelled RNA as well as several species of snRNA, as demonstrated by double-labelling experiments and gel electrophoresis. Treatment of rats with alpha-amanitin leads to a significant decrease in the amount of recovered RNP. In the presence of 0.7 M NaCl the s-value of the complex changes from 70-110S to 40-80S. The RNP structure is stable to mild RNase A or micrococcal nuclease digestion. Transmission electron microscopy reveals the presence of a heterogeneous population of particles with a mean diameter of 300-360 A. The isolated RNP structure differs completely from the well-known monoparticle or polyparticle hnRNP complexes and from the 30S or smaller snRNP particles but could be similar to or identical with the heterogeneous complex described by Jacob et al. [29].  相似文献   

19.
Fu D  Collins K 《Molecular cell》2007,28(5):773-785
The identities and roles of proteins associated with human telomerase remain poorly defined. To gain insight, we undertook an affinity purification of endogenously assembled human telomerase complexes. We show that specific subsets of H/ACA, Sm, and hnRNP proteins associate with active and inactive telomerase RNPs, while two NTPase proteins associate preferentially with active enzyme. All three core H/ACA-motif binding proteins are telomerase holoenzyme components essential for RNP accumulation. On the other hand, telomerase RNPs lacking interaction with Sm proteins or hnRNP C remain fully functional for telomere elongation. Curiously, overexpression of either associated hnRNP protein (hnRNP C and hnRNP U) or either NTPase protein (NAT10 and GNL3L) induced telomere shortening. Our findings suggest that endogenous human telomerase complexes are more heterogeneous than those of single-celled eukaryotes, have predominantly shared rather than telomerase-specific proteins, and make numerous regulatory interactions.  相似文献   

20.
At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号