首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
山奈酚抑制蛋白激酶CK2活性   总被引:5,自引:0,他引:5  
研究体外以及HL-60细胞内山奈酚对蛋白激酶CK2的抑制作用及机制. 通过测定药物作用后转移到CK2底物上的[γ-32P]ATP的32P的放射性活度, 探讨山奈酚对重组人CK2全酶以及细胞内CK2活性的影响; 采用多重RT-PCR检测CK2α、α' 和 β亚基的mRNA表达水平; 通过 Lineweaver-Burk作图法,分析CK2的酶动力学机制.山奈酚能显著抑制重组人CK2活性(IC50 = 1.88 μmol/L)和HL-60细胞内的CK2活性, 对细胞内CK2的作用效果强于阳性对照四溴-2-氮杂苯并咪唑(TBB). 山奈酚作用2h,对CK2各亚基的mRNA表达水平均没有影响. 山奈酚对重组人CK2的酶动力学分析表明, 山奈酚与ATP(Ki = 1.14 μmol/L)及酪蛋白(Ki = 1.03 μmol/L)均呈非竞争性抑制作用. 结果提示, 山奈酚是一种有效的蛋白激酶CK2的抑制剂, 其作用机制可能与其阻碍CK2与ATP以及底物的结合有关.  相似文献   

2.
Since Svf1 is phosphoprotein, we investigated whether it was a substrate for protein kinase CK2. According to the amino acid sequence Svf1 harbours 20 putative CK2 phosphorylation sites. Here, we have reported cloning, overexpression, purification and characterization of yeast Svf1 as a substrate for three forms of yeast CK2. Svf1 serves as a substrate for both the recombinant CK2α (K m 0.35 μM) and CK2α′ (K m 0.18 μM) as well as CK2 holoenzyme (K m 1.1 μM). Different K m values argue that CK2β(β′) subunit has an inhibitory effect on the activity of both CK2α and CK2α′ towards surviving factor Svf1. Reconstitution of α′2ββ′ isoform of CK2 holoenzyme shows that β/β′ subunits have regulatory effect depending on the kind of CK2 catalytic subunit. This effect was not observed in the case of α2ββ′ isoform, which may be due to interaction between Svf1 and regulatory CK2β subunit (shown by co-immunoprecipitation experiments). Interactions between CK2 subunits and Svf1 protein may have influence on ATP as well as ATP-competitive inhibitors (TBBt and TBBz) binding. CK2 phosphorylates up to six serine residues in highly acidic peptide K199EVIPESDEEESSADEDDNEDEDEESGDSEEESGSEEESDSEEVEITYED248 of the Svf1 protein in vitro. Presented data may help to elucidate the role of protein kinase CK2 and Svf1 in the regulation of cell survival pathways.  相似文献   

3.
CK2 is a heterotetrameric ubiquitous kinase consisting of two catalytic subunits and two regulatory subunits. The two catalytic subunits, α and α', are highly homologous but differ in their C-terminal regions. It is not known whether CK2α and α' have distinctive substrate specificity, since no α- or α'-specific substrate has been identified. Thus, it is assumed that the two kinase isoforms overlap in their substrate specificity. CK2 protein levels and activity were found to be elevated in the brain when compared to other organs. Here we have studied the protein levels of CK2α and α' isoforms in nine major brain regions. We found that both, CK2α and α', are expressed in all brain regions tested. Whereas CK2α levels do not vary strongly across the regions, CK2α' levels are slightly higher in the cortex and hippocampus than in other regions. Furthermore, we show that CK2α protein levels in the striatum are relatively high when compared to CK2α'. The approximate stoichiometry ratio of CK2α:CK2α' is 8:1. Therefore, one can consider that CK2α levels are predominant in comparison to CK2α' levels throughout the mammalian brain.  相似文献   

4.
Protein kinase CK2, formerly known as casein kinase II, is a ubiquitous protein serine/threonine kinase. The enzyme exists in tetrameric complexes composed of two catalytic (CK2α and/or CK2α′) subunits and two subunits (CK2β) that appear to have a role in modulating the activity of the catalytic subunits. With the exception of their unrelated carboxy-terminal domains, the two isozymic forms of mammalian CK2 display extensive sequence identity. Furthermore, CK2α and CK2α′ exhibit remarkable conservation between species, suggesting that they may have unique functions. In the present study, the cDNAs encoding CK2α and CK2α′ were modified by addition of the hemagglutinin tag of the influenza virus at the amino terminus of the respective proteins. The epitope-tagged proteins were transfected into Cos-7 cells and the localization of the expressed proteins determined by indirect immunofluorescence using monoclonal antibodies specific for the epitope tag. The use of transfection favors the formation of homotetrameric complexes (i.e., α2β2, α′2β2) instead of heterotetrameric complexes (i.e., αα′β2) that are present in many cells. Epitope-tagged CK2α and CK2α′ displayed kinase activity and the ability to form complexes with CK2β. The results of these studies also indicate definitively that CK2α and CK2α′ are both localized predominantly within the nucleus. Mutation of conserved lysine residues within the ATP binding domains of CK2α and CK2α′ resulted in loss of kinase activity. However, examination of these mutants indicates that kinase activity is not essential for formation of complexes between subunits of CK2 and is not required for nuclear localization of CK2. J. Cell. Biochem. 64: 525–537. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The specificity of 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), an ATP/GTP competitive inhibitor of protein kinase casein kinase-2 (CK2), has been examined against a panel of 33 protein kinases, either Ser/Thr- or Tyr-specific. In the presence of 10 microM TBB (and 100 microM ATP) only CK2 was drastically inhibited (>85%) whereas three kinases (phosphorylase kinase, glycogen synthase kinase 3 beta and cyclin-dependent kinase 2/cyclin A) underwent moderate inhibition, with IC(50) values one--two orders of magnitude higher than CK2 (IC(50)=0.9 microM). TBB also inhibits endogenous CK2 in cultured Jurkat cells. A CK2 mutant in which Val66 has been replaced by alanine is much less susceptible to inhibition by TBB as well as by another ATP competitive inhibitor, emodin. These data show that TBB is a quite selective inhibitor of CK2, that can be used in cell-based assays.  相似文献   

6.
7.
Eukaryotic protein kinases are fundamental factors for cellular regulation and therefore subject of strict control mechanisms. For full activity a kinase molecule must be penetrated by two stacks of hydrophobic residues, the regulatory and the catalytic spine that are normally well conserved among active protein kinases. We apply this novel spine concept here on CK2α, the catalytic subunit of protein kinase CK2. Homo sapiens disposes of two paralog isoforms of CK2α (hsCK2α and hsCK2α'). We describe two new structures of hsCK2α constructs one of which in complex with the ATP-analog adenylyl imidodiphosphate and the other with the ATP-competitive inhibitor 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol. The former is the first hsCK2α structure with a well defined cosubstrate/magnesium complex and the second with an open β4/β5-loop. Comparisons of these structures with existing CK2α/CK2α' and cAMP-dependent protein kinase (PKA) structures reveal: in hsCK2α' an open conformation of the interdomain hinge/helix αD region that is critical for ATP-binding is found corresponding to an incomplete catalytic spine. In contrast hsCK2α often adopts the canonical, PKA-like version of the catalytic spine which correlates with a closed conformation of the hinge region. HsCK2α can switch to the incomplete, non-canonical, hsCK2α'-like state of the catalytic spine, but this transition apparently depends on binding of either ATP or of the regulatory subunit CK2β. Thus, ATP looks like an activator of hsCK2α rather than a pure cosubstrate.  相似文献   

8.
Protein kinase CK2 is a heteromeric enzyme with catalytic (alpha) and regulatory (beta) subunits which form an alpha2beta2 holoenzyme and utilizes both ATP and GTP as nucleotide substrate. Site-directed mutagenesis of CK2alpha subunit was used to study this capacity to use GTP. Deletion of asparagine 118 (alpha(deltaN118)) or the mutant alphaN118E gives a 5-6-fold increase in apparent Km for GTP with little effect on the affinity for ATP. Mutants alphaN118A and alphaD120N did not alter significantly the Km for either nucleotide. CK2alphaN118 has an apparent Ki for inosine 5' triphosphate 5-fold higher than wild-type and is very heat labile. These studies complement recent crystallographic data indicating a role for CK2alpha asparagine 118 in binding the guanine base.  相似文献   

9.
Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase consisting of two catalytic α/α′ and two regulatory β subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. Accordingly inhibition of CK2 is known to induce programmed cell death, making it a promising target for cancer therapy. In the present study we investigated apoptosis induction by the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in prostate tumor cells. In contrast to PC-3 cells LNCaP cells respond to CK2 inhibition with apoptosis. Most interestingly we found the mitochondrial pathway induced in LNCaP as well as in PC-3 cells as monitored by down-regulation of bcl-2 and subsequent cytochrome c release. In both cell lines activation of caspase 9 was not detected. Instead, an activation of the endoplasmic reticulum (ER) stress response in LNCaP cells after treatment with the CK2 inhibitor TBB was found. We show that this ER stress response led to an up-regulation of the death receptor DR5 and subsequent apoptosis in LNCaP cells.  相似文献   

10.
Two novel crystal structures of Zea mays protein kinase CK2alpha catalytic subunit, one in complex with the specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) and another in the apo-form, were solved at 2.2 A resolution. These structures were compared with those of the enzyme in presence of ATP and GTP (the natural cosubstrates) and the inhibitor emodin. Interaction of TBB with the active site of CK2alpha is mainly due to van der Waals contacts, with the ligand fitting almost perfectly the cavity. One nitrogen of the five-membered ring interacts with two charged residues, Glu 81 and Lys 68, in the depth of the cavity, through two water molecules. These are buried in the active site and are also generally found in the structures of CK2alpha enzyme analyzed so far, with the exception of the complex with emodin. In the N-terminal lobe, the position of helix alphaC is particularly well preserved in all the structures examined; the Gly-rich loop is displaced from the intermediate position it has in the apo-form and in the presence of the natural cosubstrates (ATP/GTP) to either an upper (with TBB) or a lower position (with emodin). The selectivity of TBB for CK2 appears to be mainly dictated by the reduced size of the active site which in most other protein kinases is too large for making stable interactions with this inhibitor.  相似文献   

11.
The Mediterranean fruit fly Ceratitis capitata is an insect capable of wreaking extensive damage to a wide range of fruit crops. Protein kinase CK2 is a ubiquitous Ser/Thr kinase that is highly conserved among eukaryotes; it is a heterotetramer composed of two catalytic (α) and a dimer of regulatory (β) subunits. We present here the construction of the cDNA molecules of the CK2α and CK2β subunits from the medfly C. capitata by the 5'/3' RACE and RT-PCR methods, respectively. CcCK2α catalytic subunit presents the characteristic and conserved features of a typical protein kinase, similar to the regulatory CcCK2β subunit, that also possess the conserved features of regulatory CK2β subunits, as revealed by comparison of their predicted amino acid sequences with other eukaryotic species. The recombinant CcCK2α and CcCK2β proteins were purified by affinity chromatography to homogeneity, after overexpression in Escherichia coli. CcCK2α is capable to utilize GTP and its activity and is inhibited by polyanions and stimulated by polycations in phosphorylation assays, using purified acidic ribosomal protein P1 as a substrate.  相似文献   

12.
13.
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.  相似文献   

14.
CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.  相似文献   

15.
Protein kinase CK2 is ubiquitously expressed. The holoenzyme is composed of two catalytic α- or α′-subunits and two regulatory β-subunits but evidence is accumulating that the subunits can function independently. The composition of the holoenzyme as well as the expression of the individual subunits varies in different tissues, with high expression of CK2α′ in testis and brain. CK2 phosphorylates a number of different substrates which are implicated in basal cellular processes such as proliferation and survival of cells. Here, we report a new substrate, KIF5C, which is a member of the kinesin 1 family of motor neuron proteins. Phosphorylation of KIF5C was demonstrated in vitro and in vivo. Using deletion mutants, a peptide library, and mutation analysis a phosphorylation site for CK2 was mapped to amino acid 338 which is located in the non-motor domain of KIF5C. Interestingly, KIF5C is phosphorylated by holoenzymes composed of CK2α/CK2β and CK2α′/CK2β as well as by CK2α′ alone but not by CK2α alone.  相似文献   

16.
Casein kinase II (formerly known as CK2), a ubiquitous Ser/Thr kinase, plays critical roles in all higher organisms including plants. The CK2 holoenzyme consists of two catalytic α subunits and two regulatory β subunits. The Arabidopsis genome has four α subunit and four β subunit genes, and members of both the α and β subunit families have been shown to be localized in the cytoplasm, nucleus and also in chloroplasts. However, the biological roles of CK2 subunits have not been fully characterized yet. Here we identified T-DNA insertion mutants in three α subunit genes (α1, α2 and α3) and made double and triple mutants. The CK2 α1α2α3 triple mutants displayed reduced CK2 activity compared with wild-type seedlings. Phenotypic characterization showed that CK2 α1α2α3 triple mutants are late flowering under both long- and short-day conditions. Genes encoding floral integrators are differentially regulated in the triple mutant compared with the wild-type plants. CK2 α1α2α3 triple mutants also displayed reduced hypocotyl growth, smaller cotyledon size and a reduced number of lateral roots compared with wild-type seedlings under light. Abscisic acid-induced blockage of seed germination and cotyledon greening is reduced in CK2 α subunit mutants in an additive manner. Moreover, CK2 α subunit mutants are also hyposensitive to a NaCl-induced blockage of seed germination. Taken together, these data suggest that CK2 α subunits affect diverse developmental and stress responsive pathways in Arabidopsis.  相似文献   

17.
Subcellular localization of protein kinase CK2   总被引:17,自引:0,他引:17  
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function.  相似文献   

18.
19.
Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio between the maize holoenzyme and the catalytic subunit from CK2 maize shows that the incorporation of the catalytic subunit into the holoenzyme leads to a 14-fold activation in the case of ATP and 8-fold activation in the case of GTP. The maize holoenzyme is about 10 times more sensitive towards CK2 inhibitor heparin, on the other hand, it is stimulated only 0% by polylysine as compared to the human counterpart. The maize holoenzyme activity is more sensitive towards NaCl concentrations higher than those of rhCK2 and treatment with urea showed that rmCK2 holoenzyme was denatured more readily than the human holoenzyme.  相似文献   

20.
CK2 is a highly conserved, ubiquitous, signal responsive protein serine/threonine kinase. CK2 promotes cell proliferation and suppresses apoptosis, and increased CK2 expression is observed in all cancers examined. We previously reported that direct injection of antisense (AS) CK2α phosphorothioate oligonucleotides (PTO) into xenograft prostate tumors in mice significantly reduced tumor size. Downregulation of CK2α in tumor cells in vivo appeared to result in overexpression of CK2α' protein. This suggested that in cancer cells downregulation of CK2α might be compensated by CK2α' in vivo, prompting us to design a bispecific (bs) AS PTO (bs-AS-CK2) targeting both catalytic subunits. bs-AS-CK2 reduced CK2α and α' protein expression, decreased cell proliferation, and induced apoptosis in cultured cells. Biodistribution studies of administered bs-AS-CK2 oligonucleotide demonstrated its presence in orthotopic prostate xenograft tumors. High dose injections of bs-AS-CK2 resulted in no damage to normal liver or prostate, but induced extensive cell death in tumor tissue. Intraperitoneal treatment with bs-AS-CK2 PTO decreased orthotopic tumor size and downregulated both CK2 mRNA and protein expression. Tumor reduction was accomplished using remarkably low doses and was improved by dividing the dose using a multi-day schedule. Decreased expression of the key signaling pathway proteins NF-κB p65 and AKT was also observed. We propose that the molecular downregulation of CK2 through bispecific targeting of the two catalytic subunits may be uniquely useful for therapeutic elimination of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号