首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants use signaling pathways involving salicylic acid, jasmonic acid, and ethylene to defend against pathogen and herbivore attack. Many defense response genes involved in these signaling pathways have been characterized, but little is known about the selective pressures they experience. A representative set of 27 defense response genes were resequenced in a worldwide set of 96 Arabidopsis thaliana accessions, and patterns of single nucleotide polymorphisms (SNPs) were evaluated in relation to an empirical distribution of SNPs generated from either 876 fragments or 236 fragments with >400 bp coding sequence (this latter set was selected for comparisons with coding sequences) distributed across the genomes of the same set of accessions. Defense response genes have significantly fewer protein variants, display lower levels of nonsynonymous nucleotide diversity, and have fewer nonsynonymous segregating sites. The majority of defense response genes appear to be experiencing purifying selection, given the dearth of protein variation in this set of genes. Eight genes exhibit some evidence of partial selective sweeps or transient balancing selection. These results therefore provide a strong contrast to the high levels of balancing selection exhibited by genes at the upstream positions in these signaling pathways.  相似文献   

2.
Gos G  Wright SI 《Molecular ecology》2008,17(23):4953-4962
We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.  相似文献   

3.
An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection.  相似文献   

4.
5.
Disease resistance (R) genes are found in plants as either simple (single allelic series) loci, or more frequently as complex loci of tandemly repeated genes. These different loci are likely to be under similar evolutionary forces from pathogens, but the contrast between them suggests important differences in mechanisms associated with DNA structure and recombination that generate and maintain R gene diversity. The RPP13 locus in Arabidopsis represents an important paradigm for studying the evolution of an R gene at a simple locus. The RPP13 allele from the accession Nd-1, designated RPP13-Nd, confers resistance to five different isolates of the biotrophic oomycete, Peronospora parasitica (causal agent of downy mildew), and encodes an NBS-LRR type R protein with a putative amino-terminal leucine zipper. The RPP13-Rld allele, cloned from the accession Rld-2, encodes a different specificity. Comparison of three RPP13 alleles revealed a high rate of amino acid divergence within the LRR domain, less than 80% identity overall, compared to the remainder of the protein (> 95% identity). We also found evidence for positive selection in the LRR domain for amino acid diversification outside the core conserved beta-strand/beta-turn motif, suggesting that more of the LRR structure is available for interaction with target molecules than has previously been reported for other R gene products. Furthermore, an amino acid sequence (LLRVLDL) identical in an LRR among RPP13 alleles is conserved in other LZ NBS-LRR type R proteins, suggesting functional significance.  相似文献   

6.
Pogson GH 《Genetics》2001,157(1):317-330
Molecular studies of nucleotide sequence variation have rarely attempted to test hypotheses related to geographically varying patterns of natural selection. The present study tested the role of spatially varying selection in producing significant linkage disequilibrium and large differences in the frequencies of two common alleles at the pantophysin (Pan I) locus among five populations of the Atlantic cod, Gadus morhua. Nucleotide sequences of 124 Pan I alleles showed strong evidence for an unusual mix of balancing and directional selection but no evidence of stable geographically varying selection. The alleles were highly divergent at both the nucleotide level (differing on average by 19 mutations) and at amino acid level (each having experienced three amino acid substitutions since diverging from a common ancestral allele). All six amino acid substitutions occurred in a 56-residue intravesicular loop (IV1 domain) of the vesicle protein and each involved a radical change. An analysis of molecular variation revealed significant heterogeneity in the frequencies of recently derived mutations segregating within both allelic classes, suggesting that two selective sweeps may be presently occurring among populations. The dynamic nature of the Pan I polymorphism in G. morhua and clear departure from equilibrium conditions invalidate a simple model of spatially varying selection.  相似文献   

7.
The frequencies of alleles at the α-Amylase locus of D. pseudoobscura were followed in both large and small experimental populations. No evidence for balancing or directional selection was found, although our ability to detect weak selection is limited. The gene frequency changes in our experimental populations were consistent with the hypothesis of selective neutrality and genetic drift due to sampling error.  相似文献   

8.
L locus resistance (R) proteins are nucleotide binding (NB-ARC) leucine-rich repeat (LRR) proteins from flax (Linum usitatissimum) that provide race-specific resistance to the causal agent of flax rust disease, Melampsora lini. L5 and L6 are two alleles of the L locus that directly recognize variants of the fungal effector AvrL567. In this study, we have investigated the molecular details of this recognition by site-directed mutagenesis of AvrL567 and construction of chimeric L proteins. Single, double and triple mutations of polymorphic residues in a variety of AvrL567 variants showed additive effects on recognition strength, suggesting that multiple contact points are involved in recognition. Domain-swap experiments between L5 and L6 show that specificity differences are determined by their corresponding LRR regions. Most positively selected amino acid sites occur in the N- and C-terminal LRR units, and polymorphisms in the first seven and last four LRR units contribute to recognition specificity of L5 and L6 respectively. This further confirms that multiple, additive contact points occur between AvrL567 variants and either L5 or L6. However, we also observed that recognition of AvrL567 is affected by co-operative polymorphisms between both adjacent and distant domains of the R protein, including the TIR, ARC and LRR domains, implying that these residues are involved in intramolecular interactions to optimize detection of the pathogen and defense signal activation. We suggest a model where Avr ligand interaction directly competes with intramolecular interactions to cause activation of the R protein.  相似文献   

9.
Kim Y 《Genetics》2006,172(3):1967-1978
The allele frequency of a neutral variant in a population is pushed either upward or downward by directional selection on a linked beneficial mutation ("selective sweeps"). DNA sequences sampled after the fixation of the beneficial allele thus contain an excess of rare neutral alleles. This study investigates the allele frequency distribution under selective sweep models using analytic approximation and simulation. First, given a single selective sweep at a fixed time, I derive an expression for the sampling probabilities of neutral mutants. This solution can be used to estimate the time of the fixation of a beneficial allele from sequence data. Next, I obtain an approximation to mean allele frequencies under recurrent selective sweeps. Under recurrent sweeps, the frequency spectrum is skewed toward rare alleles. However, the excess of high-frequency derived alleles, previously shown to be a signature of single selective sweeps, disappears with recurrent sweeps. It is shown that, using this approximation and multilocus polymorphism data, genomewide parameters of directional selection can be estimated.  相似文献   

10.
Biological situations involving conflict can create arms race situations with repeated fixations of different functional variants, producing selective sweeps and lowering neutral diversity in genome regions linked to the functional locus. However, they can sometimes lead to balancing selection, potentially creating long coalescent times for sites with functionally different variants, and, if recombination occurs rarely, for extended haplotypes carrying such variants. We tested between these possibilities in a gynodioecious plant, Plantago lanceolata, in which cytoplasmic male‐sterility factors conflict with nuclear restorers of male fertility. We find low mitochondrial diversity, which does not support very long‐term coexistence of highly diverged mitochondrial haplotypes. Interestingly, however, we found a derived haplotype that is associated with male fertility in a restricted geographic region, and that has fixed differences from the ancestral sequence in several genes, suggesting that it did not arise very recently. Taken together, the results suggest arms race events that involved “soft" selective sweeps involving a moderately old‐established haplotype, consistent with the frequency fluctuations predicted by theoretical models of gynodioecy.  相似文献   

11.
Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained.  相似文献   

12.
Schlenke TA  Begun DJ 《Genetics》2005,169(4):2013-2022
Immune system genes in a California population sample of Drosophila simulans were shown to bear several hallmarks of the effects of past directional selection. One potential effect of directional selection is an increase in linkage disequilibrium among the polymorphic sites that are linked to the site under selection. In this study, we focus on three D. simulans immunity loci, Hmu, Sr-CI/Sr-CIII, and Tehao, for which the polymorphic sites are in nearly perfect linkage disequilibrium, an unusual finding even with respect to other immunity genes sampled from the same lines. The most likely explanation for this finding is that, at each locus, two divergent alleles have been selected to intermediate frequencies in the recent past. The extent to which the linkage disequilibrium extends to the flanks of each of the immunity genes is minimal, suggesting that the favored mutations actually occurred within the immunity genes themselves. Furthermore, the excess linkage disequilibrium found in the California population is not found in an African D. simulans population sample and may be a result of novel pathogen-mediated selection pressures encountered during establishment of non-African populations.  相似文献   

13.
Signatures of balancing selection are often found when investigating the extremely polymorphic regions of major histocompatibility complex (MHC) genes, and it is generally accepted that selective forces maintain this polymorphism. However, the exact nature of the selection is controversial. Theoretical studies have mainly focused on overdominance and/or frequency dependent selection while laboratory studies have emphasised the role of mate choice. Empirical field data, on the other hand, have been relatively scarce. Previously we have found that geographic structure in MHC class II genes of the Great Snipe (Gallinago media) is too pronounced to be explained by neutral forces alone. Here we test the hypothesis that sexual selection on MHC alleles may be influencing this geographic structure between mountain and lowland populations. We found evidence of balancing selection acting on MHC genes in the form of a higher rate of amino-acid changing substitutions compared to silent substitutions in the peptide binding regions. Not only natural selection but also sexual selection may influence MHC polymorphism in this bird because certain MHC alleles have been found to be associated with higher male mating success. Contrary to predictions from negative frequency dependent selection, males carrying locally rare alleles did not have a mating advantage. Instead, the mating success of alleles in a mountain population was positively correlated to their relative frequency in the mountains compared to the lowlands, implying that locally adapted MHC alleles may also be favoured by sexual selection.  相似文献   

14.
Plants defend themselves against the attack of natural enemies by using an array of both constitutively expressed and induced defenses. Long-lived woody perennials are overrepresented among plant species that show strong induced defense responses, whereas annual plants and crop species are underrepresented. However, most studies of plant defense genes have been performed on annual or short-lived perennial weeds or crop species. Here I use molecular population genetic methods to survey six wound-inducible protease inhibitors (PIs) in a long-lived woody, perennial plant species, the European aspen (Populus tremula), to evaluate the likelihood of either recurrent selective sweeps or balancing selection maintaining amino acid polymorphisms in these genes. The results show that none of the six PI genes have reduced diversities at synonymous sites, as would be expected in the presence of recurrent selective sweeps. However, several genes show some evidence of nonneutral evolution such as enhanced linkage disequilibrium and a large number of high-frequency-derived mutations. A group of at least four Kunitz trypsin inhibitor genes appear to have experienced elevated levels of nonsynonymous substitutions, indicating allelic turnover on an evolutionary timescale. One gene, TI1, has enhanced levels of intraspecific polymorphism at nonsynonymous sites and also has an unusual haplotype structure characterized by two divergent haplotypes occurring at roughly equal frequencies in the sample. One haplotype has very low levels of intraallelic nucleotide diversity, whereas the other haplotype has levels of diversity comparable to other genes in P. tremula. Patterns of sequence diversity at TI1 do not fit a simple model of either balancing selection or recurrent selective sweeps. This suggests that selection at TI1 is more complex, possibly involving allelic cycling.  相似文献   

15.
Ayala FJ  Balakirev ES  Sáez AG 《Gene》2002,300(1-2):19-29
We have examined the patterns of polymorphism at two linked loci, Sod and Est-6, separated by nearly 1000 kb on the left arm of chromosome 3 of Drosophila melanogaster. The evidence suggests that natural selection has been involved in shaping the polymorphisms. At the Sod locus, a fairly strong (s>0.01) selective sweep, started ≥2600 years ago, increased the frequency of a rare haplotype, F(A), to about 50% frequency in populations of Europe, Asia, and the Americas. More recently, an F(A) allele mutated to an S allele, which has increased to frequencies 5–15% in populations of Europe, Asia and North America. All S alleles are identical (or very nearly) in sequence and differ by one nucleotide substitution (which accounts for the F→S electrophoretic difference) from F(A) alleles. At the Est-6 locus, the evidence indicates both directional and balancing selection impacting separately the promoter and the coding regions of the gene, with linkage disequilibrium occurring within each region. Some linkage disequilibrium also exists between the two genes.  相似文献   

16.
Recombination between paralogues at the Rp1 rust resistance locus in maize   总被引:7,自引:0,他引:7  
Rp1 is a complex rust resistance locus of maize. The HRp1-D haplotype is composed of Rp1-D and eight paralogues, seven of which also code for predicted nucleotide binding site-leucine rich repeat (NBS-LRR) proteins similar to the Rp1-D gene. The paralogues are polymorphic (DNA identities 91-97%), especially in the C-terminal LRR domain. The remaining family member encodes a truncated protein that has no LRR domain. Seven of the nine family members, including the truncated gene, are transcribed. Sequence comparisons between paralogues provide evidence for past recombination events between paralogues and diversifying selection, particularly in the C-terminal half of the LRR domain. Variants selected for complete or partial loss of Rp1-D resistance can be explained by unequal crossing over that occurred mostly within coding regions. The Rp1-D gene is altered or lost in all variants, the recombination breakpoints occur throughout the genes, and most recombinant events (9/14 examined) involved the same untranscribed paralogue with the Rp1-D gene. One recombinant with a complete LRR from Rp1-D, but the amino-terminal portion from another homologue, conferred the Rp1-D specificity but with a reduced level of resistance.  相似文献   

17.
Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available.  相似文献   

18.
A major theoretical consequence of selection at a locus is the genetic hitchhiking of linked sites (selective sweep). The extent of hitchhiking around a gene is related to the strength of selection and the rate of recombination, with its impact diminishing with distance from the selected site. At the Rop-1 locus of the sheep blowfly, Lucilia cuprina, polymorphisms at two different sites within the LcαE7 gene encode forms of the protein that confer organophosphorus insecticide resistance. To assess the impact of selection at these two sites on variation around LcαE7, we sequenced regions within six other genes along chromosome IV across isogenic (IV) strains of L. cuprina. High levels of linkage disequilibrium, characterized by low haplotype number (K) and diversity (H), and significant R(2) values were observed for two genes, LcαE1 and LcαE10, both members of the same α-esterase gene cluster as LcαE7. A significant R(2) value was also observed for a gene predicted to be the next closest to LcαE7, AL03, but not for any of the other genes, LcRpL13a, Lcdsx, or LcAce. Skews in the site frequency spectra toward high-frequency variants were significant for LcαE1 (Fay and Wu's H = -2.91), LcαE10 (H = -1.85), and Lcdsx (H = -2.00). Since the selective sweeps, two forms of likely returning variation were observed, including variation in microsatellites in an intron of LcαE10 and a recombination event between LcαE7 and LcαE10. These data suggest that two incomplete soft sweeps have occurred at LcαE7 that have significantly affected variation across, and beyond, the α-esterase gene cluster of L. cuprina. The speed and impact of these selective sweeps on surrounding genomic variation and the ability of L. cuprina to respond to future environmental challenges are discussed.  相似文献   

19.
The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.  相似文献   

20.
DuMont VB  Aquadro CF 《Genetics》2005,171(2):639-653
To identify genomic regions affected by the rapid fixation of beneficial mutations (selective sweeps), we performed a scan of microsatellite variability across the Notch locus region of Drosophila melanogaster. Nine microsatellites spanning 60 kb of the X chromosome were surveyed for variation in one African and three non-African populations of this species. The microsatellites identified an approximately 14-kb window for which we observed relatively low levels of variability and/or a skew in the frequency spectrum toward rare alleles, patterns predicted at regions linked to a selective sweep. DNA sequence polymorphism data were subsequently collected within this 14-kb region for three of the D. melanogaster populations. The sequence data strongly support the initial microsatellite findings; in the non-African populations there is evidence of a recent selective sweep downstream of the Notch locus near or within the open reading frames CG18508 and Fcp3C. In addition, we observe a significant McDonald-Kreitman test result suggesting too many amino acid fixations species wide, presumably due to positive selection, at the unannotated open reading frame CG18508. Thus, we observe within this small genomic region evidence for both recent (skew toward rare alleles in non-African populations) and recurring (amino acid evolution at CG18508) episodes of positive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号