首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Triphosphoinositide (TPI) has been demonstrated to be a receptor for aminoglycosides in the cochlea and may regulate ionic permeability by its binding with Ca++. This phospholipid was localized by a protein A-gold technique in the cochlea at the electronmicroscopic level. TPI was prepared by a neomycin column and antibodies to it were raised in rabbits. The antibody used in this study reacted virtually only to TPI among the tested lipids. TPI was localized mainly at stereocilia, cuticular plates, head plates of Deiters' cells, plasma membrane, and mitochondria of various cells in the organ of Corti. In the vascular stria, TPI was found mainly at the plasma membrane of basal infoldings of the marginal cells. Possible physiological and pathophysiological roles of TPI in the cochlea are briefly discussed.  相似文献   

2.
3.
4.
5.
Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments.  相似文献   

6.
Triphosphoinositide (TPI), an aminoglycoside receptor and a possible regulator of cationic permeation through its ability to bind with Ca++, was localized by the protein-A gold technique in vestibular sensory epithelia using an antibody highly specific to TPI. TPI was detected on the stereocilia, kinocilia, and cuticular plate of hair cells, and in the reticular membrane of supporting cells. The cilia of hair cells are damaged by aminoglycosides at a relatively early stage of toxicity. Ca++-regulated bioactivity in this area is probably involved.  相似文献   

7.
Summary Triphosphoinositide (TPI), an aminoglycoside receptor and a possible regulator of cationic permeation through its ability to bind with Ca++, was localized by the protein-A gold technique in vestibular sensory epithelia using an antibody highly specific to TPI. TPI was detected on the stereocilia, kinocilia, and cuticular plate of hair cells, and in the reticular membrane of supporting cells. The cilia of hair cells are damaged by aminoglycosides at a relatively early stage of toxicity. Ca++-regulated bioactivity in this area is probably involved.  相似文献   

8.
9.
10.
11.
12.
The structure of triphosphoinositide from beef brain   总被引:13,自引:0,他引:13  
  相似文献   

13.
1. Some properties of the triphosphoinositide phosphomonoesterase from the homogenates of guinea-pig brain were studied. The enzyme has an optimum pH range 6.7-7.3, is stimulated with KCl at a concentration of 0.1m, and under these conditions has K(m)1.43x10(-4)m. 2. A factor from the ;pH5 supernatant' of guinea-pig brain stimulates the enzyme activity over and above the stimulation produced by KCl. Subcellular fractions of guinea-pig brain varied in their response to the ;pH5 supernatant'. Maximum stimulation was observed with the P(1) fraction, containing myelin and nuclei. 3. An assay system for the enzyme was developed that contained optimum concentrations of both KCl and the ;pH5 supernatant'. Acid phosphatases were inhibited by NaF, but, in contrast with previous work, no EDTA was added to the assay system to inhibit the alkaline phosphatases. This reagent inhibited the triphosphoinositide phosphomonoesterase. It was estimated that the remaining fraction of non-specific phosphatases can account for only 14% of the observed triphosphoinositide phosphomonoesterase activity. 4. Subcellular fractions of guinea-pig brain were characterized by electron microscopy and subcellular markers. The triphosphoinositide phosphomonoesterase exhibited a distribution between the fractions similar to that of 5'-nucleotidase, but different from that of alkaline phosphatase.  相似文献   

14.
15.
16.
High heat of enzymatic hydrolysis of triphosphoinositide phosphate bonds and of high-energy phosphates is observed using microcalorimetry. Heats of hydrolysis of triphosphoinositide, ADP and ATP sharply increase with increasing pH values from 6.6 to 7.4. Heat of hydrolysis of diphosphoinositide correlates with that of low-energy phosphates, pK4 and pK5 values for triphosphoinositide are found to be 7.4 and 9.3 respectively by means of potentiometric titration deltaGo' values for diphosphoinositide and triphosphoinositide are -3.5 and -7.1 kcal/mole respectively, taking into consideration the correction for heat neutralization-ionization during hydrolysis. Rapid triphosphoinositide hydrolysis takes place in 1% aqueous pyridine solution at 100 degrees C. In contrast to diphosphoinositide and monophosphoinositide, infrared spectra of triphosphoinositide have an additional absorption band at 930 cm(-1). 31P NMR method has revealed the presence of one diester and two monoester groups in the molecule of triphosphoinositide. The differences described between triphosphoinositide and other compounds with phosphomonoester groups are suggested to be due to electrostatic nonbounded interaction of vicinal diequatorial phosphate groups.  相似文献   

17.
18.
Acetylcholine (ACh) and adenosine 5'-triphosphate (ATP) are shown to act in opposing fashion on guinea-pig cochlear outer hair cells (OHCS) via receptors localized within different fluid compartments of the organ of Corti. The cholinergic (efferent) receptors localized at the basal (perilymphatic) region of these cells activated a rapidly desensitizing hyperpolarizing K+ current. In contrast, purinergic (ATP) receptors were localized at the apical (endolymphatic) surface of OHCS and activated a depolarizing nonselective cation current which exhibited inward rectification and lacked desensitization. Localization of the receptors was determined by using whole-cell patch-clamp, by recording onset latencies and response amplitudes to pulses of either ACh or ATP pressure-applied at selected sites along the length of isolated OHCS. Under voltage-clamp at -60 mV, the largest ACh-induced (outward) currents were recorded when ACh was directed at the basal region of the cells. Conversely, the maximum (inward) ATP currents were obtained when ATP was directed toward the apical surface of these cells. Onset latencies increased rapidly from a minimum of approximately 10 ms for either ACh or ATP as the drug pipette was moved away from these optimal sites. The ATP response was antagonized by amiloride in a dose-dependent manner with a KD of approximately 400 microM. The localization of P2-type purinoceptors to the endolymphatic surface of OHCS suggests that ATP mediates a humoral modulation of the mechano-electrical transduction process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号