首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P59 is the Trp-rich 20-mer peptide (767L-G786), partial sequence of the membrane-proximal external region (MPER) of the FIV gp36. It has potent antiviral activity, possibly due to a mechanism that inhibits the fusion of the virus with the cell membranes. In the hypothesis that a lipophilic tail could enhance the adhesion of P59 to the membrane so improving its antiviral activity, we synthesized its lipoylated analogue lipo-P59. Fluorescence, CD and NMR investigations in membrane mimicking environments (such as SDS and DPC micelles) were aimed to assess the potential of the lipo-P59 lipophilic tail to affect the biophysical and conformational behaviour of the peptide. In vitro inhibitory assays using lymphoid cell cultures to check the antiviral activity of peptides were also performed. The data show that the biophysical properties and the conformational preferences of the peptides are not dramatically affected by the hydrophobic tail, suggesting that the lipopeptide is capable of preserving all the biophysical peculiarities. Similarly, antiviral experimental data show that the membrane-anchored lipo-P59 peptide is also effective in inhibiting virus replication. Moreover, the lipophilic tail allows P59 to preserve its antiviral activity even in conditions in which the non lipoylated peptide is devoid of activity. In accordance with the unusual high Trp presence, the peptides confirm the preference to be positioned on the membrane interface. Furthermore, the data point out a peculiarity of interaction of the peptides with SDS as compared with DPC.  相似文献   

2.
D'Errico G  D'Ursi AM  Marsh D 《Biochemistry》2008,47(19):5317-5327
P59, a 20-mer peptide modeled on the membrane-proximal external region (MPER) of the feline immunodeficiency virus (FIV) gp36 ectodomain, has potent antiviral activity. The lipoylated analogue, lipo-P59, displays a similar activity, which is preferentially retained by cellular substrates. A mechanism has been proposed recently in which the peptide, being positioned on the surface of the cell membrane, inhibits its fusion with the virus; the lipophilic chain of lipo-P59 is thought to insert into the membrane interior, thus anchoring the peptide at the surface. In the present work, lipid-peptide interactions of P59 and lipo-P59 with phospholipid liposomes are investigated using spin-label electron spin resonance spectroscopy. Two phospholipids have been examined, the zwitterionic dimyristoyl phosphatidylcholine and the anionic dimyristoyl phosphatidylglycerol, and a wide range of lipid spin labels, including positional isomers. Independent of the membrane charge, both peptides bind to lipid bilayers; however, whereas P59 insertion between the lipid headgroups leads to significant liposome destabilization, eventually resulting in vesicle fragmentation with the formation of smaller aggregates, lipo-P59 inserts with the lipophilic tail among the lipid chains, while the peptidic portion remains adsorbed onto the membrane, where it can effectively exert its antiviral activity.  相似文献   

3.
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.  相似文献   

4.
In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T55VYVYSRVK63) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.  相似文献   

5.
Brevinin‐2‐related peptide (BR‐II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV‐1. To understand the active conformation of the BR‐II peptide in membranes, we have investigated the interaction of BR‐II with the prokaryotic and eukaryotic membrane‐mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N‐terminus tryptophan residue of BR‐II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane‐mimetic micelles induce an α‐helix conformation in BR‐II. We have also determined the solution structures of BR‐II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR‐II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N‐terminus and C‐terminus helices. The ability of BR‐II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR‐II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR‐II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
PW2 is an anticoccidial peptide active against Eimeria acervulina and Eimeria tenella. We determined the structure of PW2 in dodecylphosphocholine micelles. The structure showed two distinct regions: an amphipathic N-terminal 310 helix and an aromatic region containing WWR interface-binding motif. The aromatic region acted as a scaffold of the protein in the interface and shared the same structure in both DPC and SDS micelles. N-terminal helix interacted with DPC but not with SDS interface. Chemical shift change was slow when SDS was added to PW2 in DPC and fast when DPC was added to PW2 in SDS, indicating that interaction with DPC micelles was kinetically more stable than with SDS micelles. Also, DPC interface was able to accommodate PW2, but it maintained the conformational arrangement in the aromatic region observed for SDS micelles. This behavior, which is different from that observed for other antimicrobial peptides with WWR motif, may be associated with the absence of PW2 antibacterial activity and its selectivity for Eimeria parasites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Deposits: PDB code 2JQ2 and BMRB accession number 15267.  相似文献   

7.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an alpha helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

8.
Feline immunodeficiency virus (FIV) provides a valuable animal model by which criteria for lentivirus control strategies can be tested. Previous studies have shown that a 20-mer synthetic peptide of the membrane-proximal ectodomain of FIV transmembrane glycoprotein, designated peptide 59, potently inhibited the growth of tissue culture-adapted FIV in feline fibroblastoid CrFK cells. In the present report we describe the potential of this peptide to inhibit the replication of primary FIV isolates in lymphoid cells. Because antiviral activity of peptide 59 was found to map to a short segment containing three conserved Trp residues, further analyses focused on a derivative of eight amino acids ((770)W-I(777)), designated C8. Peptide C8 activity was found to be dependent on conservation of the Trp motif, to be removed from solution by FIV absorbed onto substrate cells, and to be blocked by a peptide derived from the N-terminal portion of FIV transmembrane glycoprotein. Structural studies showed that peptide C8 possesses a conformational propensity highly uncommon for peptides of its size, which may account for its considerable antiviral potency in spite of small size.  相似文献   

9.
10.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an α helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

11.
12.
Ctriporin peptide (Ctr), a novel antimicrobial peptide isolated from the venom of the scorpion Chaerilus tricostatus, shows a broad‐spectrum of antimicrobial activity and is able to inhibit antibiotic resistant pathogens, including Methicillin resistant Staphylococcus aureus, Methicillin Resistant Coagulase‐negative Staphylococcus, and Penicillin Resistant Staphylococcus epidermidis strains. To understand the active conformation of the Ctr peptide in membranes, we have investigated the interaction of Ctr with the negatively charged and zwitterionic membrane‐mimetic micelles such as sodium dodecyl sulphate (SDS) and n‐dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N‐terminus tryptophan residue of Ctr interacted with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane‐mimetic micelles induce an α‐helix conformation in Ctr. Moreover, we have determined the solution structures of Ctr in SDS and DPC micelles using nuclear magnetic resonance (NMR) spectroscopy. The structural comparison of Ctr in the presence of SDS and DPC micelles showed significant conformational changes. The observed structural differences of Ctr in anionic versus zwitterionic membrane‐mimetic micelles suggest that the mode of interaction of this peptide may be different in two environments which may account for its ability to differentiate bacterial and eukaryotic cell membrane. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1143–1153, 2014.  相似文献   

13.
Khandelia H  Kaznessis YN 《Peptides》2006,27(6):1192-1200
Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively. The goal of this study is to dissect the differences in peptide composition which make the mutant peptides (novispirin-G10 and novispirin-T7) less toxic than the parent peptide ovispirin (OVIS), although all three peptides have highly antibacterial properties. Compared to G10 and T7, OVIS inserts deepest into the DPC micelle. This correlates well with the lesser toxicity of G10 and T7. There is strong evidence which suggests that synergistic binding of hydrophobic residues drives binding of OVIS to the micelle. The helical content of G10 and T7 is reduced in the presence of DPC, and this leads to less amphipathic peptide structures, which bind weakly to the micelle. Simulations in SDS were carried out to compare the influence of membrane electrostatics on peptide structure. All three peptides bound strongly to SDS, and retained helical form. This corresponds well with their equally potent antibacterial properties. Based on the simulations, we argue that secondary structure stability often leads to toxic properties. We also propose that G10 and T7 operate by the carpet mechanism of cell lysis. Toxicity of peptides operating by the carpet mechanism can be attenuated by reducing the peptide helical content. The simulations successfully capture experimental binding states, and the different depths of binding of the three peptides to the two micelles correlate with their antibacterial and toxic properties.  相似文献   

14.
Alyteserin-1c (GLKEIFKAGLGSLVKGIAAHVAS.NH(2)), first isolated from skin secretions of the midwife toad Alytes obstetricans, shows selective growth-inhibitory activity against Gram-negative bacteria. The structures of alyteserin-1c and its more potent and less haemolytic analogue [E4K]alyteserin-1c were investigated in various solution and membrane mimicking environments by proton NMR spectroscopy and molecular modelling. In aqueous solution, the peptide displays a lack of secondary structure but, in a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O solvent mixture, the structure is characterised by an extended alpha helix between residues Leu(2) and Val(21). Solution structural studies in the membrane mimicking environments, sodium dodecyl sulphate (SDS), dodecylphosphocholine (DPC), and 1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine (DHPC) micelles, indicate that these peptides display an alpha helical structure between residues Lys(3) and Val(21). Positional studies of the peptides in SDS, DPC and DHPC media show that the N-terminal and central residues lie inside the micelle while C-terminal residues beyond Ala(19) do not interact with the micelles.  相似文献   

15.
Antimicrobial peptides are recognized candidates with pharmaceutical potential against epidemic emerging multi‐drug resistant bacteria. In this study, we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to determine the unknown structure and evaluate the interaction with dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles with three W6‐Hylin‐a1 analogs antimicrobial peptides (HyAc, HyK, and HyD). The HyAc, HyK, and HyD bound to DPC micelles are all formed by a unique α‐helix structure. Moreover, all peptides reach the DPC micelles' core, which thus suggests that the N‐terminal modifications do not influence the interaction with zwiterionic surfaces. On the other hand, only HyAc and HyK peptides are able to penetrate the SDS micelle core while HyD remains always at its surface. The stability of the α‐helical structure, after peptide‐membrane interaction, can also be important to the second step of peptide insertion into the membrane hydrophobic core during permeabilization. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

17.
18.
Aβ (16-35) is the hydrophobic central core of β-amyloid peptide, the main component of plaques found in the brain tissue of Alzheimer's disease patients. Depending on the conditions present, β-amyloid peptides undergo a conformational transition from random coil or α-helical monomers, to highly toxic β-sheet oligomers and aggregate fibrils. The behavior of β-amyloid peptide at plasma membrane level has been extensively investigated, and membrane charge has been proved to be a key factor modulating its conformational properties. In the present work we probed the conformational behavior of Aβ (16-35) in response to negative charge modifications of the micelle surface. CD and NMR conformational analyses were performed in negatively charged pure SDS micelles and in zwitterionic DPC micelles “doped” with small amounts of SDS. To analyze the tendency of Aβ (16-35) to interact with these micellar systems, we performed EPR experiments on three spin-labeled analogues of Aβ (16-35), bearing the methyl 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl) methanethiolsulfonate spin label at the N-terminus, in the middle of the sequence and at the C-terminus, respectively. Our conformational data show that, by varying the negative charge of the membrane, Aβ (16-35) undergoes a conformational transition from a soluble helical-kink-helical structure, to a U-turn shaped conformation that resembles protofibril models.  相似文献   

19.
Le Lan C  Neumann JM  Jamin N 《FEBS letters》2006,580(22):5301-5305
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein.  相似文献   

20.
The three-dimensional structures in dodecylphosphocholine (DPC) micelles and in trifluoroethanol (TFE) of the pediocin-like antimicrobial peptide sakacin P and an engineered variant of sakacin P (termed sakP[N24C+44C]) have been determined by use of nuclear magnetic resonance spectroscopy. SakP[N24C+44C] has an inserted non-native activity- and structure-stabilizing C-terminal disulfide bridge that ties the C-terminus to the middle part of the peptide. In the presence of DPC, the cationic N-terminal region (residues 1-17) of both peptides has an S-shaped conformation that is reminiscent of a three-stranded antiparallel beta-sheet and that is more pronounced when the peptide was dissolved in TFE instead of DPC. The four positively charged residues located in the N-terminal part are found pointing to the same direction. For both peptides, the N-terminal region is followed by a well-defined central amphiphilic alpha-helix (residues 18-33), and this in turn is followed by the C-terminal tail (residues 34-43 for sakacin P and 34-44 for sakP[N24C+44C]) that lacks any apparent common secondary structural motif. In the presence of DPC, the C-terminal tails in both peptides fold back onto the central alpha-helix, thereby creating a hairpin-like structure in the C-terminal halves. The lack of long-range NOEs between the beta-sheet Nu-terminal region and the hairpin-like C-terminal half indicates that there is a flexible hinge between these regions. We discuss which implications such a structural arrangement has on the interaction with the target cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号