首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of calcium between isolated rat liver mitochondria and the extramitochondrial medium at 37°C and in the presence of 2mm inorganic phosphate, 3mm ATP, 0.05 or 1.1mm free magnesium and a calcium buffer, nitrilotriacetic acid, was investigated using a45Ca exchange technique. The amounts of40Ca in the mitochondria and medium were allowed to reach equilibrium before initiation of the measurement of45Ca exchange. At 0.05mm free magnesium and initial extramitochondrial free calcium concentrations of between 0.15 and 0.5 m, the mitochondria accumulated calcium until the extramitochondrial free calcium concentration was reduced to 0.15 m. Control experiments showed that the mitochondria were stable under the incubation conditions employed. The45Ca exchange data were found to be consistent with a system in which two compartments of exchangeable calcium are associated with the mitochondria. Changes in the concentration of inorganic phosphate did not significantly affect the45Ca exchange curves, whereas an increase in the concentration of free magnesium inhibited exchange. The maximum rate of calcium outflow from the mitochondria was estimated to be 1.7 nmol/min per mg of protein, and the value ofK 0.5 for intramitochondrial exchangeable calcium to be about 1.6 nmol per mg of protein. Ruthenium Red decreased the fractional transfer rate for calcium inflow to the mitochondria while nupercaine affected principally the fractional transfer rates for the transfer of calcium between the two mitochondrial compartments. The use of the incubation conditions and45Ca exchange technique described in this report for studies of the effects of agents which may alter mitochondrial calcium uptake or release (e.g., the pre-treatment of cells with hormones) is briefly discussed.  相似文献   

2.
Accumulation of calcium in the mitochondria of rat liver parenchymal cells at 16 and 24 hours after poisoning with carbon tetrachloride is associated with an increase in amount of liver inorganic phosphate, the persistence of mitochondrial adenosine triphosphatase activity, and the formation of electron-opaque intramitochondrial masses in cells with increased calcium contents. These masses, which form within the mitochondrial matrix adjacent to internal mitochondrial membranes, resemble those observed in isolated mitochondria which accumulate calcium and inorganic phosphate; are present in a locus similar to that of electron opacities which result from electron-histochemical determination of mitochondrial ATPase activity; and differ in both appearance and position from matrix granules of normal mitochondria. After poisoning, normal matrix granules disappear from mitochondria prior to their accumulation of calcium. As calcium-associated electron-opaque intramitochondrial masses increase in size, mitochondria degenerate in appearance. At the same time, cytoplasmic membrane systems of mid-zonal and centrilobular cells are disrupted by degranulation of the rough endoplasmic reticulum and the formation of labyrinthine tubular aggregates. The increase in amount of inorganic phosphate in rat liver following poisoning is balanced by a decreased amount of phosphoprotein. These chemical events do not appear to be related, however, as the inorganic phosphate accumulated is derived from serum inorganic phosphate.  相似文献   

3.
Effects of ATP on calcium binding to synaptic plasma membrane   总被引:1,自引:0,他引:1  
The release of labeled norepinephrine from preloaded synaptosomes requires the presence of potassium and calcium. ATP-dependent binding of calcium to synaptic plasma membranes (SPM) may provide a means of maintaining the cation in a readily available pool for the triggering of transmitter release. A high Ca-binding capacity was demonstrated in SPM. The Km for calcium is 5.5 X 10(-5) M. The dependence of the system on the gamma phosphate of ATP was demonstrated by an increase in Ca-binding with increasing ATP concentration and by competitive inhibition of binding by ADP and AMP. Magnesium is also required for ATP-dependent Ca-binding. The optimum pH for the Ca binding was 7.0. Pretreatment of SPM with phospholipase A2 lowered the binding capacity. Sulfhydryl groups are also critical for ATP-dependent Ca binding to occur. A model for ATP-dependent Ca-binding was proposed.  相似文献   

4.
Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from desheathed rabbit vagus nerves after loading with radiophosphate. The effects of strategies designed to increase intracellular calcium were investigated. At the same time, the exchangeable calcium content was measured using45Ca. Application of calcium ionophore A23187 increased phosphate efflux in the presence of external calcium in parallel with an increase in calcium content. In the absence of external calcium, there was only a late, small increase in phosphate efflux. For nerves already treated with the calcium ionophore, the phosphate efflux was sensitive to small changes in external calcium, in the range 0.2 to 2mm calcium, whereas similar increases in calcium in absence of ionophore gave much smaller increases in phosphate efflux. Removal of external sodium (choline substitution) produced an initial increase in phosphate efflux followed by a fall. The initial increase in phosphate efflux was much larger in the presence of calcium, than in its absence. The difference was again paralleled by an increase in calcium content of the preparation, thought to be due to inhibition of Na/Ca exchange by removal of external sodium. Measurements of ATP content and ATP, ADP, phosphate and creatine phosphate ratios did not indicate significant metabolic changes when the calcium content was increased. Stimulation of phosphate efflux by an increase in intracellular calcium may be due to stimulation of phospholipid metabolism. Alternatively, it is suggested that stimulation of phosphate efflux is associated with the stimulation of calcium efflux, possibly by cotransport of calcium and phosphate.  相似文献   

5.
A double-stranded RNA specific nuclease (ds RNase) has been purified from the pearl milletPennisetum typhoides. The purification involved S-30 preparation from the germinating embryos, DEAE-cellulose and DNA-cellulose chromatography. The partially pure enzyme preferentially solubilized the synthetic double-stranded polynucleotide [3H]poly(rA) · poly(rU); the degradation of [3H]poly(rC) was fourteen fold lower under the same assay conditions. Further more, the ds RNase activity was inhibited to an extent of 58% by ethidium bromide, which is known to intercalate with double-stranded RNAs. Active sulfhydryl groups were found to be necessary for the ds RNase activity since the enzyme action was inhibited by N-ethylmaleimide. Ethidium bromide and N-ethyl-maleimide did not significantly inhibit the ss RNase activity. In contrast, diethyl pyrocarbonate inhibited ss RNase activity completely and ds RNase by 58%. Heating the enzyme for 20 min at 50°C resulted in drastic loss of both enzyme activities. The ds RNase showed maximum activity in the pH range of 6.5 to 7.5. The enzyme actsin vitro onE. coli 30S precursor ribosomal RNA and the cleavage products migrated in the region of mature 23S and 16S rRNAs.  相似文献   

6.
Kenefick DG  Hanson JB 《Plant physiology》1966,41(10):1601-1609
An investigation has been made of the possibility of utilizing the potential energy of the contracted state of corn mitochondria to drive Ca + inorganic phosphate accumulation. Contraction was obtained with succinate or NADH oxidation. In the succinate experiments the mitochondria were contracted in buffered KCl layered over sucrose in centrifuge tubes and centrifuged down through distinct wash, reactive and isotope exchange layers. In the NADH experiments, ion accumulation was initiated upon exhaustion of the substrate. The results show that mitochondria in the contracted state will actively bind some 45Ca, but no real accumulation occurs until inorganic phosphate is available. Substrate powered contraction in the presence of inorganic phosphate also provides a potential for accumulation upon subsequent reaction of the mitochondria with Ca. It is deducted that contraction is due to X~I formation, to which Ca will bind. Subsequent reaction with inorganic phosphate produces CaX~P, which is the transport moiety. When X~P is formed first, Ca also reacts to produce CaX~P. Hence it is immaterial which ion reacts first with the contracted state. Contraction is believed to result from the action of a mechanoenzyme, presumably I~. The stability of CaX~I must be low for the mitochondria swell very rapidly upon exhaustion of NADH or blocking of succinate oxidation by cyanide.  相似文献   

7.
Summary The distribution of intracellular calcium was determined in isolated kidney cells by kinetic analyses of45Ca fluxes. Isotopic desaturation curves reveal an intracellular calcium compartment with a very slow time constant. The size of this calcium compartment is markedly increased by raising the extracellular calcium, by increasing the extracellular phosphate and may contain up to 99% of the intracellular exchangeable calcium. Accumulation of calcium in this pool is completely abolished by two specific inhibitors of mitochondrial calcium uptake, Antimycin A and Warfarin®. These results suggest that this compartment represents a pool of calcium in the cell mitochondria. The sudden removal of phosphate from the medium immediately stimulates calcium efflux from the cell. Conversely, an increase in medium phosphate immediately inhibits calcium efflux. Both effects are rapidly reversible. Finally, calcium efflux from the cells is stimulated after the cells are exposed to low temperature suggesting that calcium transport out of the cell may be regulated by the cytoplasmic calcium activity. These experiments are consistent with the view that mitochondria play an important role in the control and regulation of cytoplasmic calcium activity and of calcium transport.  相似文献   

8.
Phytases hydrolyze phytic acid to less phosphorylated myo-inositol derivatives and inorganic phosphate. A thermostable phytase is of great value in applications for improving phosphate and metal ion availability in animal feed, and thereby reducing phosphate pollution to the environment. Here, we report a new folding architecture of a six-bladed propeller for phosphatase activity revealed by the 2.1 A crystal structures of a novel, thermostable phytase determined in both the partially and fully Ca2+-loaded states. Binding of two calcium ions to high-affinity calcium binding sites results in a dramatic increase in thermostability (by as much as approximately 30 degrees C in melting temperature) by joining loop segments remote in the amino acid sequence. Binding of three additional calcium ions to low-affinity calcium binding sites at the top of the molecule turns on the catalytic activity of the enzyme by converting the highly negatively charged cleft into a favorable environment for the binding of phytate.  相似文献   

9.
Chlorotetracycline was used as a fluorescent chelate probe for visualizing calcium movements in rat liver mitochondria. It was demonstrated that under specified conditions, chlorotetracycline-associated fluorescence may be employed as a monitor of calcium uptake by mitochondrial membranes, e.g., at low calcium and Chlorotetracycline concentrations and in the absence of exogenous phosphate or acetate. However, at elevated calcium concentrations, e.g., >0.05 mm, a transient fluorescence response was observed upon addition of calcium to energized mitochondria. This transient or cyclic behavior of the chlorotetracycline-associated fluorescence was minimized by increasing the chlorotetracycline concentration, the mitochondrial protein concentration, or by including magnesium in the incubation. Also, it was demonstrated that chlorotetracycline addition to mitochondria which had been loaded previously with 45Ca resulted in a rapid efflux of the accumulated 45Ca. Because of the various effects of chlorotetracycline on the ability of the mitochondria to accumulate and to retain calcium, caution must be exercised in the interpretation of experimental results when this fluorescent chelate probe is utilized to monitor the association of divalent metal cations with biological membranes.  相似文献   

10.
High affinity Ca-binding to rabbit aortic smooth muscle microsomes was reduced at low pH. To investigate the role of this Ca-binding, aortic strips were briefly exposed either to pH 5.1 or 7.3, subsequently incubated in a Ca-free medium at pH 7.3, and then challenged with 1 μM norepinephrine (NE). Tissues pretreated at pH 5.1 gave smaller contractions. Tissues loaded with 45Ca when exposed to pH 5.1 showed much larger release of 45Ca than those exposed to pH 7.3. Subsequently, all 45Ca-loaded tissues were placed at pH 7.3 and the effect of 100 μM NE on 45Ca-efflux was examined. Tissues exposed previously to pH 7.3 showed a NE-sensitive 45Ca-efflux but those pretreated at pH 5.1 did not. The results are consistent with, but do not prove, the hypothesis that the high affinity pH-sensitive Ca-binding to plasma membranes is a large Ca-pool and that the NE-sensitive Ca-pool is a small component of it.  相似文献   

11.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

12.
1. Dialysed extracts of rat costal cartilage were shown to possess an enzyme that hydrolyses inorganic pyrophosphate. 2. Inorganic pyrophosphatase activity assayed in the presence of 2mm substrate was maximal at pH6.8. 3. Mg(2+) was essential for activity, which was greatest with 10mm or higher concentrations of Mg(2+). 4. Extracts prepared from cartilage taken from suckling rats (<20g.) showed little or no hydrolytic activity, but as rat weight increased inorganic pyrophosphatase activity was detected, increased to a maximum in tissue from animals weighing about 40g., and then rapidly declined. 5. The increase in inorganic pyrophosphatase activity was associated with an increase in the uptake of (45)Ca by the cartilage in vivo. 6. Accumulation of calcium, inorganic phosphate and magnesium occurred when inorganic pyrophosphatase activity was at its maximum. 7. Alkaline phosphatase activity, measured in the same extracts used to determine pyrophosphatase activity, was highest in the tissues of the animals weighing <20g., and decreased as inorganic pyrophosphatase activity increased to its maximum. 8. There was no direct relationship between alkaline phosphatase activity and the onset of calcification.  相似文献   

13.
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mol O2·m–2·s–1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 mol O2·m–2·s–1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.Abbreviations DHAP dihydroxyacetone phosphate - Fru6P fructose-6-phosphate - Fru 1,6BP fructose-1,6-bisphosphate - Fru1,6BPase fructose-1,6-bisphosphatase - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - CH cold-hardened rye grown at 5°C - NH nonhardened rye grown at 24°C - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - UDPGlc uridine 5-diphosphoglucose This work was supported by operating grants from the Swedish Natural Sciences Research Council to G.Ö. and P.G.  相似文献   

14.
The kinetics of [32P]phosphate uptake has been studied in different types of Saccharomyces cerevisiae mitochondria. Mitochondria were isolated from yeast grown aerobically on 2% lactate (Lac-mitochondria), 2% galactose (Gal-mitochondria), 5.4% glucose (Glu-mitochondria) or from yeast grown anaerobically on 2% galactose (Promitochondria). The effect of chloramphenicol was also studied by adding it to the growth medium of yeast grown aerobically on 2% galactose (chloramphenicol-mitochondria).[32P]Phosphate uptake followed an oscillatory pattern in Lac, Gal-mitochondria and Promitochondria.Saturation kinetics were detected in fully differenciated mitochondria and in Promitochondria, but not in chloramphenicol-mitochondria.Glu-mitochondria did not translocate phosphate as shown both by lack of [32P]phosphate uptake and lack of swelling in isoosmotic potassium solution.Repressed yeast cells were incubated in a resting cell medium and mitochondria were isolated at different times of incubation. The rate of respiration and the oligomycin-sensitive ATPase increased during the course of the incubation. After 2h, a mitochondrial mersalyl-sensitive swelling in an isoosmotic potassium phosphate solution was detected.As expected, no increase of the rate of respiration was observed when chloramphenicol was added in the derepression medium. But the oligomycin-sensitive ATPase decreased. Chloramphenicol did not affect the phosphate transport activity as measured by the swelling of mitochondria, but the [32P]phosphate uptake did not follow saturation kinetics. A complete derepression of the inorganic phosphate-carrier activity was achieved by a 4 h incubation of the repressed cells in the presence of chloramphenicol, followed by a 6 h incubation in presence of cycloheximide.These data strongly suggest that the mitochondrial protein-synthesis system is required for the normal function of the inorganic phosphate-carrier.  相似文献   

15.
O Eriksson 《FEBS letters》1991,279(1):45-48
The molecular mechanism of the Ca2(+)-induced permeabilization of rat liver mitochondria was evaluated by studying a new effect of the commonly used general anaesthetic Propofol (2,6-diisopropylphenol). The compound was found to induce an apparent uptake of Ca2+ at steady-state in the Ca2(+)-distribution between the medium and the mitochondria, and to inhibit swelling and release of accumulated Ca2+ induced by inorganic phosphate, t-butyl hydroperoxide, diamide or FCCP plus Ruthenium red. The compound did not stimulate the activity of the Ca2(+)-uniporter and it is concluded that the effects seen are due to the inhibition of the Ca2(+)-dependent, unspecific permeability increase. The results suggest two mechanisms whereby Propofol stabilizes the mitochondrial membrane in the presence of Ca2+: (i) by interaction with the putative pore, thus causing its closure; and (ii) by scavenging of free radicals thus inhibiting its opening during oxidative stress.  相似文献   

16.
At high K+ concentration, the effect of phosphate on Ca2+ uptake and release was studied in isolated rat liver mitochondria. Phosphate stimulated uptake at moderately high Ca2+ concentration, and inhibited release at high pH. At low pH, phosphate accelerated Ca2+ release. Ca2+ was released after a lag phase. The time of onset and the velocity of Ca2+ release depended on Ca2+ concentration. Ca2+ release was associated with mitochondrial swelling and destruction of the permeability barrier for sucrose and for chloride. Mg2+ inhibited Ca2+ release and the accompanying events. Ruthenium red and EGTA protected mitochondria from the destructive Ca2+ release and induced an immediate, slow release of Ca2+ and phosphate. Destructive Ca2+ release depended on the time of preincubation of respiration-inhibited mitochondria in the presence of Ca2+, prior to respiration-initiated Ca2+ uptake. The presence of phosphate and mitochondrial energization antagonized the destructive effect of calcium ions. Ca2+ release by acetoacetate also depended on pH. At pH 6.8, phosphate-stimulated Ca2+ release by acetoacetate, while it inhibited the acetoacetate effect at pH 7.6. The results suggest that an essential cause for the destruction of mitochondrial integrity is an increase in the intramitochondrial concentration of free calcium ions under the influence of phosphate.  相似文献   

17.
Chondrocyte apoptosis is thought to be an important step in the calcification of cartilage in vivo; however, there are conflicting reports as to whether or not this apoptosis is a necessary precursor to mineralization. The goal of this study was to determine whether or not apoptosis is necessary for mineralization in an in vitro murine micromass model of endochondral ossification. C3H10T1/2 murine mesenchymal stem cells were plated in micromass culture in the presence of 4 mM inorganic phosphate with the addition of the apoptogens, camptothecin, or staurosporine, to induce apoptosis. The rate and total accumulation of mineralization was measured with 45Ca uptake. In these studies, both apoptogens increased the rate of mineralization, with staurosporine increasing 45Ca accumulation by about 2.5 times that of controls and camptothecin increasing total amounts of mineralization about 1.5 times that of controls. Inhibiting cell apoptosis with the caspase inhibitor, ZVAD‐fmk, to prevent apoptosis, caused slower rates of 45Ca uptake; however, total amounts of 45Ca accumulation reached the same values by day 30 of culture. FTIR data showed mineralization in all samples treated with 4 mM inorganic phosphate, with the highest mineral to matrix ratios in the camptothecin treated samples. J. Cell. Biochem. 111: 653–658, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Calcium has been suggested as an internal second messenger when lymphocytes are stimulated by mitogens to enter the cell cycle. We have assessed the effect of 2 lymphocyte stimulants, the plant lectin phytohemagglutinin (PHA) and the calcium ionophore A23187, on human lymphocyte nucleic acid synthesis, total cell calcium content, and 4 5Ca labeling. We have used an ultrasensitive method for the measurement of total cell calcium in the same samples used for radiolabeling. Mitogenic concentrations of A23187 (~ .25 μ mole/liter) caused an increase in both total cell calcium and 4 5Ca labeling. These increases were almost completely blocked by inhibitors of mitochondrial respiration, suggesting that the calcium increment after ionophore treatment was located in the mitochondria. In contrast, total cell calcium was not altered at optimal mitogenic PHA concentrations (0.1 μg/ml and above). However, at the minimum PHA concentrations that caused stimulation (0.025 to 0.1 μg/ml), the dose response of 4 5Ca uptake was very similar to that of DNA sysnthesis. Importantly, we could not stimulate DNA synthesis with PHA without increasing lymphocyte 4 5Ca labeling. Thus, an increase in total cell calcium is not essential for mitogenesis; however, an increase in 4 5Ca exchange is closely associated with the mitogenic effects of A23187 and PHA.  相似文献   

19.
Phosphoenolpyruvate was found to depress extra oxygen consumption associated with Ca2+ -induced respiratory jump by rat heart mitochondria. Addition of phosphoenolpyruvate to mitochondria which have accumulated Ca2+ in the presence of glutamate and inorganic phosphate causes the release of Ca2+ from mitochondria. The phosphoenolpyruvate-stimulated Ca2+ efflux can be observed with mitochondria loaded with low initial Ca2+ concentration (0.12 mM) in the incubation medium. Measurements of mitochondrial H+ translocation produced by addition of Ca2+ to respiring mitochondria show that phosphoenolpyruvate depresses H+ ejection and enhances H+ uptake by mitochondria. The Ca2+ -releasing effect of phosphoenolpyruvate was found to be significantly stronger than that produced by rotenone when added to mitochondria loaded with Ca2+ in the presence of glutamate and inorganic phosphate. Dithiothreitol cannot overcome the effect of phosphoenolpyruvate on mitochondrial Ca2+ transport.  相似文献   

20.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号