首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next to the protein-based machineries composed of small G-proteins, coat complexes, SNAREs and tethering factors, the lipid-based machineries are emerging as important players in membrane trafficking. As a component of these machineries, lipid transfer proteins have recently attracted the attention of cell biologists for their involvement in trafficking along different segments of the secretory pathway. Among these, the four-phosphate adaptor protein 2 (FAPP2) was discovered as a protein that localizes dynamically with the trans-Golgi network and regulates the transport of proteins from the Golgi complex to the cell surface. Later studies have highlighted a role for FAPP2 as lipid transfer protein involved in glycosphingolipid metabolism at the Golgi complex. Here we discuss the available evidence on the function of FAPP2 in both membrane trafficking and lipid metabolism and propose a mechanism of action of FAPP2 that integrates its activities in membrane trafficking and in lipid transfer. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

2.
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.  相似文献   

3.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

4.
Endosomes are dynamic intracellular compartments that control the sorting of a constant stream of different transmembrane cargos either for ESCRT‐mediated degradation or for egress and recycling to compartments such as the Golgi and the plasma membrane. The recycling of cargos occurs within tubulovesicular membrane domains and is facilitated by peripheral membrane protein machineries that control both membrane remodelling and selection of specific transmembrane cargos. One of the primary sorting machineries is the Retromer complex, which controls the recycling of a large array of different cargo molecules in cooperation with various sorting nexin (SNX) adaptor proteins. Recently a Retromer‐like complex was also identified that controls plasma membrane recycling of cargos including integrins and lipoprotein receptors. Termed “Retriever,” this complex uses a different SNX family member SNX17 for cargo recognition, and cooperates with the COMMD/CCDC93/CCDC22 (CCC) complex to form a larger assembly called “Commander” to mediate endosomal trafficking. In this review we focus on recent advances that have begun to provide a molecular understanding of these two distantly related transport machineries.  相似文献   

5.
The polarized distribution of functions in polarized cells requires the coordinated interaction of three machineries that modify the basic mechanisms of intracellular protein trafficking and distribution. First, intrinsic protein-sorting signals and cellular decoding machineries regulate protein trafficking to plasma membrane domains; second, intracellular signalling complexes define the plasma membrane domains to which proteins are delivered; and third, proteins that are involved in cell-cell and cell-substrate adhesion orientate the three-dimensional distribution of intracellular signalling complexes and, accordingly, the direction of membrane traffic. The integration of these mechanisms into a complex and dynamic network is crucial for normal tissue function and is often defective in disease states.  相似文献   

6.
In the secretory pathway, the forward (anterograde) membrane flow is compensated by retrograde transport of proteins and lipids. Membrane recycling is required for the maintenance of organelle homeostasis and the re-use of components of the transport machineries for the generation of new transport intermediates. However, the molecular mechanisms and other cellular functions of retrograde traffic are still poorly understood. In recent years, a multitude of protein factors that function in the secretory pathway have been discovered, most of them originally suggested to play a role in forward trafficking. However, in many cases subsequent studies have revealed that these proteins participate (also) in retrograde traffic. It is likely that this shift will continue, reflecting the fact that the two pathways are intimately connected.  相似文献   

7.
Neuronal differentiation in vitro and in vivo involves coordinated changes in the cellular cytoskeleton and protein trafficking processes. I review here recent progress in our understanding of the membrane trafficking aspects of neurite outgrowth of neurons in culture and selective microtubule-based polarized sorting in fully polarized neurons, focusing on the involvement of some key molecules. Early neurite outgrowth appears to involve the protein trafficking machineries that are responsible for constitutive trans-Golgi network (TGN) to plasma membrane exocytosis, utilizing transport carrier generation mechanisms, SNARE proteins, Rab proteins and tethering mechanisms that are also found in non-neuronal cells. This vectorial TGN-plasma membrane traffic is directed towards several neurites, but can be switch to concentrate on the growth of a single axon. In a mature neuron, polarized targeting to the specific axonal and dendritic domains appears to involve selective microtubule-based mechanisms, utilizing motor proteins capable of distinguishing microtubule tracks to different destinations. The apparent gaps in our knowledge of these related protein transport processes will be highlighted.  相似文献   

8.
As compared with other eukaryotic cells, plants have developed an endoplasmic reticulum (ER)-Golgi interface with very specific structural characteristics. ER to Golgi and Golgi to ER transport appear not to be dependent on the cytoskeleton, and ER export sites have been found closely associated with Golgi bodies to constitute entire mobile units. However, the molecular machinery involved in membrane trafficking seems to be relatively conserved among eukaryotes. Therefore, a challenge for plant scientists is to determine how these molecular machineries work in a different structural and dynamic organization. This review will focus on some aspects of membrane dynamics that involve coat proteins, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment receptor proteins), lipids, and lipid-interacting proteins.  相似文献   

9.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   

10.
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome‐to‐Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.  相似文献   

11.
Cystic fibrosis (CF) is caused by defects in the CF transmembrane conductance regulator (CFTR) that functions as a chloride channel in epithelial cells. The most common cause of CF is the abnormal trafficking of CFTR mutants. Therefore, understanding the cellular machineries that transit CFTR from the endoplasmic reticulum to the plasma membrane (PM) is important. The coat protein complex I (COPI) has been implicated in the anterograde and retrograde transport of proteins and lipids between the endoplasmic reticulum and the Golgi. Here, we investigated the role of COPI in CFTR trafficking. Blocking COPI recruitment to membranes by expressing an inactive form of the GBF1 guanine nucleotide exchange factor for ADP-ribosylation factor inhibits CFTR trafficking to the PM. Similarly, inhibiting COPI dissociation from membranes by expressing a constitutively active ADP-ribosylation factor 1 mutant arrests CFTR within disrupted Golgi elements. To definitively explore the relationship between COPI and CFTR in epithelial cells, we depleted beta-COP from the human colonic epithelial cell HT-29Cl.19A using small interfering RNA. Beta-COP depletion did not affect CFTR synthesis but impaired its trafficking to the PM. The arrest occurred pre-Golgi as shown by reduced level of glycosylation. Importantly, decreased trafficking of CFTR had a functional consequence as cells depleted of beta-COP showed decreased cAMP-activated chloride currents. To explore the mechanism of COPI action in CFTR traffic we tested whether CFTR was COPI cargo. We discovered that the alpha-, beta-, and gamma-subunits of COPI co-immunoprecipitated with CFTR. Our results indicate that the COPI complex plays a critical role in CFTR trafficking to the PM.  相似文献   

12.
The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions, including the synthesis of proteins and lipids, and regulation of intracellular calcium levels. This review focuses on the distinct and complex morphology of the ER. The structure of the ER is complex because of the numerous distinct domains that exist within one continuous membrane bilayer. These domains are shaped by interactions with the cytoskeleton, by proteins that stabilize membrane shape, and by a homotypic fusion machinery that allows the ER membrane to maintain its continuity and identity. The ER also contains domains that contact the plasma membrane (PM) and other organelles including the Golgi, endosomes, mitochondria, lipid droplets, and peroxisomes. ER contact sites with other organelles and the PM are both abundant and dispersed throughout the cytoplasm, suggesting that they too could influence the overall architecture of the ER. As we will discuss here, ER shape and distribution are regulated by many intrinsic and extrinsic forces.  相似文献   

13.
COPII proteins facilitate membrane transport from the endoplasmic reticulum (ER) to the Golgi. They are highly conserved, although there are variations in their subcellular localization across plant, animal and yeast cells. Such variations may be needed to suit the unique organization of the ER and Golgi in the different cell systems. Earlier bioinformatics analyses have indicated that the Arabidopsis nuclear genome may encode chloroplast isoforms of the cytosolic trafficking protein machineries, including COPI and COPII, for vesicular transport within chloroplasts. These analyses suggest the intriguing possibility that plants may have evolved or adapted COP-like proteins to suit membrane trafficking events within specialized organelles. Here, we discuss recent data on the distribution and activity of the product of the At5g18570 locus, which encodes a putative chloroplast isoform of Sar1, the GTPase that regulates COPII assembly on the surface of the ER. Evidence is accumulating that the protein is targeted to the chloroplasts, that it has GTPase activity and that it may have a role in thylakoid membrane development, supporting the possibility that COPII-like trafficking machinery may be active in chloroplasts.  相似文献   

14.
The processes involved in sexual reproduction have been diversified during plant evolution. Whereas charales, bryophytes, pteridophytes, and some gymnosperms utilize motile sperm as male gametes, in other gymnosperms and angiosperms the immotile sperm cells are delivered to the egg cells through elongated pollen tubes. During formation of the motile sperms, cells undergo a dynamic morphological transformation including drastic changes in shape and the generation of locomotor architecture. The molecular mechanism involved in this process remains mostly unknown. Membrane trafficking fulfills the exchange of various proteins and lipids among single membrane-bound organelles in eukaryotic cells, contributing to various biological functions. RAB GTPases and SNARE proteins are evolutionarily conserved key machineries of membrane trafficking mechanisms, which regulate tethering and fusion of the transport vesicles to target membranes. Our observation of fluorescently tagged plasma membrane-resident SNARE proteins demonstrated that these proteins relocalize to spherical structures during the late stages in spermiogenesis. Similar changes in subcellular localization were also observed for other fluorescently tagged SNARE proteins and a RAB GTPase, which acts on other organelles including the Golgi apparatus and endosomes. Notably, a vacuolar SNARE, MpVAMP71, was localized on the membrane of the spherical structures. Electron microscopic analysis revealed that there are many degradation-related structures such as multi-vesicular bodies, autophagosomes, and autophagic bodies containing organelles. Our results indicate that the cell-autonomous degradation pathway plays a crucial role in the removal of membrane components and the cytoplasm during spermiogenesis of Marchantia polymorpha. This process differs substantially from mammalian spermatogenesis in which phagocytic removal of excess cytoplasm involves neighboring cells.  相似文献   

15.
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.  相似文献   

16.
The signal recognition particle (SRP) is required for protein translocation into the endoplasmic reticulum (ER). With RNA interference we reduced its level about ten-fold in mammalian cells to study its cellular functions. Such low levels proved insufficient for efficient ER-targeting, since the accumulation of several proteins in the secretory pathway was specifically diminished. Although the cells looked unaffected, they displayed noticeable and selective defects in post-ER membrane trafficking. Specifically, the anterograde transport of VSV-G and the retrograde transport of the Shiga toxin B-subunit were stalled at the level of the Golgi whereas the endocytosed transferrin receptor failed to recycle to the plasma membrane. Endocytic membrane trafficking from the plasma membrane to lysosomes or Golgi was undisturbed and major morphological changes in the ER and the Golgi were undetectable at low resolution. Selective membrane trafficking defects were specifically suppressed under conditions when low levels of SRP became sufficient for efficient ER-targeting and are therefore a direct consequence of the lower targeting capacity of cells with reduced SRP levels. Selective post-ER membrane trafficking defects occur at SRP levels sufficient for survival suggesting that changes in SRP levels and their effects on post-ER membrane trafficking might serve as a mechanism to alter temporarily the localization of selected proteins.  相似文献   

17.
The Golgi complex is essential for the processing, sorting, and trafficking of newly synthesized proteins and lipids. Golgi turnover is regulated to meet different cellular physiological demands. The role of autophagy in the turnover of Golgi, however, has not been clarified. Here we show that CALCOCO1 binds the Golgi-resident palmitoyltransferase ZDHHC17 to facilitate Golgi degradation by autophagy during starvation. Depletion of CALCOCO1 in cells causes expansion of the Golgi and accumulation of its structural and membrane proteins. ZDHHC17 itself is degraded by autophagy together with other Golgi membrane proteins such as TMEM165. Taken together, our data suggest a model in which CALCOCO1 mediates selective Golgiphagy to control Golgi size and morphology in eukaryotic cells via its interaction with ZDHHC17.  相似文献   

18.
Phosphoinositides are a class of membrane lipids that are found on several intracellular compartments and play diverse roles inside cells, such as vesicle formation, protein trafficking, endocytosis etc. Intracellular distribution and levels of phosphoinositides are regulated by enzymes that generate and breakdown these lipids as well as other proteins that associate with phosphoinositides. These events lead to differing levels of specific phosphoinositides on different intracellular compartments. At these intracellular locations, phosphoinositides and their associated proteins, such as Rab GTPases, dynamin and BAR domain-containing proteins, regulate a variety of membrane trafficking pathways. Neurodegenerative phenotypes in disorders such as Parkinson’s disease (PD) can arise as a consequence of altered or hampered intracellular trafficking. Altered trafficking can cause proteins such as \(\upalpha \)-synuclein to aggregate intracellularly. Several trafficking pathways are regulated by master regulators such as LRRK2, which is known to regulate the activity of phosphoinositide effector proteins. Perturbing either the levels of phosphoinositides or their interactions with different proteins disrupts intracellular trafficking pathways, contributing to phenotypes often observed in disorders such as Alzheimer’s or PDs. Thus, studying phosphoinositide regulation and its role in trafficking can give us a deeper understanding of the contribution of disrupted trafficking to neurodegenerative phenotypes.  相似文献   

19.
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号