首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PEP phosphoenolpyruvate - RrBP ribulose-1,5-bisphosphate - TCA tricarboxylic acid cycle  相似文献   

2.
C4 grasses of the NAD‐ME type (Astrebla lappacea, Eleusine coracana, Eragrostis superba, Leptochloa dubia, Panicum coloratum, Panicum decompositum) and the NADP‐ME type (Bothriochloa bladhii, Cenchrus ciliaris, Dichanthium sericeum, Panicum antidotale, Paspalum notatum, Pennisetum alopecuroides, Sorghum bicolor) were used to investigate the role of O2 as an electron acceptor during C4 photosynthesis. Mass spectrometric measurements of gross O2 evolution and uptake were made concurrently with measurements of net CO2 uptake and chlorophyll fluorescence at different irradiances and leaf temperatures of 30 and 40 °C. In all C4 grasses gross O2 uptake increased with increasing irradiance at very high CO2 partial pressures (pCO2) and was on average 18% of gross O2 evolution. Gross O2 uptake at high irradiance and high pCO2 was on average 3.8 times greater than gross O2 uptake in the dark. Furthermore, gross O2 uptake in the light increased with O2 concentration at both high CO2 and the compensation point, whereas gross O2 uptake in the dark was insensitive to O2 concentration. This suggests that a significant amount of O2 uptake may be associated with the Mehler reaction, and that the Mehler reaction varies with irradiance and O2 concentration. O2 exchange characteristics at high pCO2 were similar for NAD‐ME and NADP‐ME species. NAD‐ME species had significantly greater O2 uptake and evolution at the compensation point particularly at low irradiance compared to NADP‐ME species, which could be related to different rates of photorespiratory O2 uptake. There was a good correlation between electron transport rates estimated from chlorophyll fluorescence and gross O2 evolution at high light and high pCO2.  相似文献   

3.
Abstract

Effect of light on the uptake, utilization and transport of sugars. — The effect of light on the uptake of saccharides, their incorporation into insoluble fractions and their transport by green tissues has been studied under conditions of complete inhibition of the photosynthetic assimilation of CO2. Such conditions were obtained by means of either an inhibitor of O2 evolution (CMU), or by running the experiment in CO2-free atmosphere. When Wolffia arryza plants are incubated with glucose-C14, light stimulates the incorporation of C14 into all fractions examined, and especially into the polysaccharides, like cellulose,' which are synthesized outside the chloroplasts.

Experiments with Elodea canadensis have shown that light stimulates the transport of glucose-C14 from the leaves to the stems, independently of the presence or absence of CO2 assimilation.

These experiments support the hypothesis that ATP synthesyzed in the light by chloroplasts can be utilized by green cells as an energy source for biosyntheses outside the plastids, as well as for other types of biological work, such as active uptake and transport.  相似文献   

4.
Oxygen exchange in leaves in the light   总被引:30,自引:20,他引:10       下载免费PDF全文
Photosynthetic O2 production and photorespiratory O2 uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O2, O2 production increased linearly with light intensity. At low O2 or low CO2, O2 production was suppressed, indicating that increased concentrations of both O2 and CO2 can stimulate O2 production. At the CO2 compensation point, O2 uptake equaled O2 production over a wide range of O2 concentrations. O2 uptake increased with light intensity and O2 concentration. At low light intensities, O2 uptake was suppressed by increased CO2 concentrations so that O2 uptake at 1,000 microliters per liter CO2 was 28 to 35% of the uptake at the CO2 compensation point. At high light intensities, O2 uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO2 was 75% or more of the rate of O2 uptake at the compensation point. The response of O2 uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O2 uptake to O2 concentration saturated at about 30% O2 in high light and at a lower O2 concentration in low light. O2 uptake was also observed with the C4 plant Amaranthus edulis; the rate of uptake at the CO2 compensation point was 20% of that observed at the same light intensity with the C3 species, and this rate was not influenced by the CO2 concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O2.  相似文献   

5.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

6.
Acclimation of respiration to the light environments is important for a plant’s carbon balance. Respiratory rates of mature leaves of Alocasia odora, a typical shade‐tolerant species, were measured during the night for 14 d after reciprocal transfers between high‐ (330 µ mol m?2 s?1) and low‐light (20 µ mol m?2 s?1) environments. Following the transfer, both the rate of CO2 efflux and that of O2 uptake of A. odora leaves adjusted to the new light environments. The O2‐uptake rates changed more slowly than the CO2‐efflux rates under the new environments. Leaf mass per area also changed after the transfer. We analysed whether substrate availability or ATP‐consumption rates influence the respiratory acclimation. Since the addition of sucrose to leaf segments did not influence the O2‐uptake rates, the change of respiratory substrate availability was not responsible for the respiratory acclimation. The addition of an uncoupler induced increases in the O2‐uptake rates, and the degree of enhancement significantly decreased after the transfer from low to high irradiance. Thus, the change in ATP‐consumption rates was responsible for the changes in respiratory rates in the plants transferred from low to high light. Potential rates of O2 uptake, as measured in the presence of both the substrate and the uncoupler, changed after the transfer, and strongly correlated with the O2‐uptake rates, irrespective of the directions of transfer (r = 0·961). There was a strong correlation between maximal activities of NAD‐isocitrate dehydrogenase and the potential rates of O2 uptake (r = 0·933), but a weaker correlation between those of cytochrome c oxidase and the potential rates (r = 0·689). These data indicate that the changes of light environments altered the respiratory rates via the change of the respiratory ATP demand, and that the altered rates of respiration will induce the changes of the respiratory capacities.  相似文献   

7.
The depressions of photosynthetic CO2 uptake following O3 exposures of 200 and 400 nmol mol-1 for between 4 and 16 h were compared between Pisum sativum, Quercus robur and Triticum aestivum, and the potential causes of change identified in vivo. Photosynthetic change was examined by analysis of CO2, O2, O3 and water vapour exchanges together with chlorophyll fluorescence in controlled environments. Under identical fumigation conditions, each species showed very similar rates of O3 consumption. The light-saturated rate of CO2 uptake showed a statistically significant decrease in each species with increasing O3 dose. Although stomatal conductance declined in parallel with CO2 uptake this did not account for the observed decrease in photosynthesis. The decrease in mesophyll conductance resulted primarily from a decrease in the apparent carboxylation capacity, implying in decreased activity of ribulose 1,5-bisphosphate carboxylase/oxygenase. The maximum capacity of carboxylation was consequently reduced by over 30% and 50% after 16 h fumigation with 200 and 400 nmol mol-1 O3 respectively. Additionally, in Q. robur, a statistically significant inhibition of the CO2 saturated rate of photosynthesis occurred after 16 h with 400 nmol mol-1 O3, suggesting that the ability to regenerate ribulose 1,5-bisphosphate was also impaired. None of the species showed any significant decrease in the efficiency of light-limited photosynthesis following fumigation at 200 nmol mol-1 O3, but effects were apparent at 400 nmol mol-1 O3. The common feature in all three species was a decline in carboxylation capacity which preceded any other change in the photosynthetic apparatus.Abbreviations Asat net CO2 uptake rate per unit leaf area at light saturation - A net CO2 uptake rate per unit leaf area - Amax net CO2 uptake rate per unit leaf area at CO2 and light saturation - ci mole fraction of CO2 in the intercellular air space - gs stomatal conductance to CO2 - Fm maximum chlorophyll fluorescence - Fv variable chlorophyll fluorescence - c quantum yield of CO2 uptake for absorbed light - 0 quantum yield of oxygen evolution for incident light - PPFD photosynthetically active radiation - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Vcmax maximum rate of carboxylation  相似文献   

8.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

9.
The nature of the different processes of O2 uptake involved in the light in the red macroalga Chondrus crispus Stackhouse (Rhodophyta, Gigartinales) was investigated. At limiting CO2, INH (2.5 mM) did not alter the O2 uptake rate. Glycolate was not excreted and did not accumulate within the cells. KCN reduced the rate of O2 uptake in the light by 76% at limiting CO2 and by 43% at saturating CO2, but caused > 95% inhibition of O2 evolution. DCMU (5 μM) totally blocked the photosynthetic electron transport chain, but allowed a residual O2 uptake of 3.0±0.6 μmol O2 .h?1.g?1 FW, irrespective of the CO2 concentration. In saturating CO2, a high light intensity pretreatment significantly stimulated the rate of O2 uptake compared to net O2 evolution, suggesting the persistence, in the light, of mitochondrial respiration. Irrespective of the CO2 concentration, the optimum temperature for O2 evolution was 17°C whereas dark O2 uptake increased linearly with temperature. In contrast, O2 uptake in the light showed an optimum at 17°C in limiting CO2, and 21–25° C in saturating CO2; its Q10 was 2.4 at limiting CO2, a value close to that of RuBP oxygenase, and 3.1 at saturating CO2, a value close to that of dark respiration. It is concluded that: 1) mitochondrial respiration and Mehler reaction are both involved at all CO2 concentrations, 2) RuBP oxygenase activity cannot account for more than 45%, and Mehler reaction for less than 20%, of the total O2 uptake observed in the light at limiting CO2.  相似文献   

10.
Summary The O2 uptake and RQ of germinating negatively photoblastic Zygophyllum coccineum seeds were studied during the first fourty hours after soaking in water under dark or light conditions. Five phases could be distinguished in the course of O2 uptake in water in dark. The respiration course in light did not differ from that in dark till the 12th hour after soaking, then it deviated showing a low level, The RQ values in dark and light are nearly identical; both had sharp decline between the 8th and the 16th hour after soaking. Light, by blocking germination, affected the O2 uptake.Moisture stress simulated by mannitol solutions caused a decrease in the O2 uptake of seeds and seedlings. Na2SO4 caused a reduction and a lag in the time of maximum O2 uptake. NaCl showed a particular effect on respiration of germinating seeds causing earlier rise and decrease in O2 uptake than in water. NaCl was effective in rising the O2 uptake of seedlings specially those supplied with glucose. Its effect was not pronounced on starved seedlings. O2 uptake of seedlings germinated in NaCl was considerably high when compared with that of seeds germinating in the same medium 40 hours after soaking.The decreasing effect of moisture stress caused by mannitol on O2 uptake was reversed by diluting the medium or replacing it with water. Values of O2 uptake on number of seedlings basis are different from those calculated on fresh weight basis due to the difference in water content of seedlings germinated under various conditions.  相似文献   

11.
The exchange of O2 and CO2 by photoautotrophic cells of Euphorbia characias L. was measured using a mass-spectrometry technique. During a dark-tolight transition the O2 uptake rate was little affected whereas CO2 efflux was decreased by 40%. In order to differentiate eventual superimposed O2-uptake processes, the kinetics of O2 exchange resulting from brief illuminations were measured with a highly sensitive device. When the cells were exposed to a saturating light for short periods, the rate of O2 uptake passed through a series of transients: there was first a stimulation occurring 2–3 s after the appearance of O2 from water-splitting, followed 30 s later by an inhibition. These two transients were reduced 80% by 3-(3,4-dichlorophenyl)1, 1-dimethylurea (DCMU), indicating that they relied on the linear transport of electrons in the chloroplasts. The first transient (stimulation of an O2 uptake) was little affected by mitochondrial inhibitors such as antimycin A and oligomycin or the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but was increased in presence of KCN. When spaced flashes (2 us duration; 100-ms intervals) were used instead of continuous light, this transient was almost suppressed indicating that it was dependent on the saturation of some component of the chloroplastic chain. The second transient (inhibition of O2 uptake) was present when spaced flashes were used instead of continuous light. It was markedly decreased by addition of CCCP and mitochondrial inhibitors (antimycin A, oligomycin, KCN) which strongly indicates that it relied on mitochondrial respiration. It is concluded from these experiments that illumination of the cells resulted in an inhibition of mitochondrial respiration, but the resulting inhibition of O2 uptake was hidden by the appearance of an O2-uptake process of extramitochondrial origin, presumably located in the chloroplast.Abbreviations CCCP carbonylcyanide mchlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Rubisco ri-bulose-1,5-bisphosphate carboxylase/oxygenase The authors thank Drs A. Vermeglio, P. Thibault and P. Gans for helpful discussions.  相似文献   

12.
Summary The uptake of carbohydrates and oxygen by cell suspension cultures of the plant Eschscholtzia californica (California poppy) was studied in relation to biomass production in shake flasks, a 1-1 stirred-tank bioreactor and a 1-1 pneumatically agitated bioreactor. The sequence of carbohydrate uptake was similar in all cases, with sucrose hydrolysis occurring followed by the preferential uptake of glucose. The uptake of fructose was found to be affected by the oxygen supply rate. Carbohydrate utilization occurred at a slower rate in the bioreactors. Apparent biomass yields, Y X/S, ranged from 0.42 to 0.50 g biomass/g carbohydrate, while true biomass yields, Y X/S, were about 0.69 g/g. The maintenance coefficient for carbohydrate, m S, ranged between 0.002 and 0.008 g/dry weight (DW) per hour. The maximum measured specific oxygen uptake rate was 0.56 mmol O2/g DW per hour and occurred early in the growth stage. The decline in specific uptake rate coincided with a decline in cell viability. The oxygen uptake rate was faster in shake flasks, corresponding to the higher growth rate obtained. The true growth yield on oxygen, YX/O2, was calculated to range from 0.83 to 1.23 g biomass/g O2, while the maintenance coefficient, mO2, ranged from 0.15 to 0.25 mmol O2/g DW per hour. The growth yields for oxygen determined from the stoichiometry of an elemental balance were within 10% of those calculated from experimental data. Offprint requests to: Raymond L. Legge  相似文献   

13.
Gerbaud A  André M 《Plant physiology》1980,66(6):1032-1036
Unidirectional O2 fluxes were measured with 18O2 in a whole plant of wheat cultivated in a controlled environment. At 2 or 21% O2, O2 uptake was maximum at 60 microliters per liter CO2. At lower CO2 concentrations, it was strongly inhibited, as was photosynthetic O2 evolution. At 2% O2, there remained a substantial O2 uptake, even at high CO2 level; the O2 evolution was inhibited at CO2 concentrations under 330 microliters per liter. The O2 uptake increased linearly with light intensity, starting from the level of dark respiration. No saturation was observed at high light intensities. No significant change in the gas-exchange patterns occurred during a long period of the plant life. An adaptation to low light intensities was observed after 3 hours illumination. These results are interpreted in relation to the functioning of the photosynthetic apparatus and point to a regulation by the electron acceptors and a specific action of CO2. The behavior of the O2 uptake and the study of the CO2 compensation point seem to indicate the persistence of mitochondrial respiration during photosynthesis.  相似文献   

14.
Respiratory gas exchange in the airbreathing fish,Synbranchus marmoratus   总被引:1,自引:0,他引:1  
Synopsis The partitioning of O2 uptake between aquatic and aerial gas exchange and its dependence on ambient water PO2 was studied in the facultative air breathing teleost Synbranchus marmoratus, after acclimation to well aerated water and after acute and chronic exposure to hypoxic water. O2 uptake was also studied following acute air exposure and after prolonged entrapment in soil. Breathing rates during water and air breathing in response to reduced water PO2 and tidal volume during air breathing were also studied. S. marmoratus satisfies its O2 requirement by water breathing alone until water PO2 falls below 30–50 mm Hg (switching PO2) depending on the acclimation history. Below the switching PO2, air breathing is adopted while active water breathing stops. The O2 uptake varied little for all groups when the principal mode of gas exchange changed at the switching PO2. The highest O2 uptake prevailed when the fish employed the mode of gas exchange in operation during the acclimation period (i.e. water breathing for normoxia-acclimated, air breathing for hypoxic-acclimated).Acclimation to chronic hypoxia gave a much higher switching PO2 55 mm Hg) than for the other groups (about 30 mm Hg). S. marmoratus maintained its O2 uptake when acutely exposed to air. When entrapped in soil in an aestivating state, the O2 uptake was reduced to 25% of that in water or during acute air exposure. The overall gas exchange ratio for air breathing was very low (RE 0.1).Branchial water pumping increased with lowering of water PO2. The rate of air breathing was independent of water PO2.The findings are discussed in the light of the ecophysiological conditions confronting S. marmoratus.  相似文献   

15.
Reversible inactivation of nitrate reductase in Chlorella vulgaris in vivo   总被引:1,自引:1,他引:0  
Summary The NADH-nitrate oxidoreductase of Chlorella vulgaris has an inactive form which has previously been shown to be a cyanide complex of the reduced enzyme. This inactive enzyme can be reactivated by treatment with ferricyanide in vitro. In the present study, the activation state of the enzyme was determined after different prior in vivo programs involving environmental variations. Oxygen, nitrate, light and CO2 all affect the in vivo inactivation of the enzyme in an interdependent manner. In general, the inactivation is stimulated by O2 and inhibited by nitrate and CO2. Light may stimulate or inhibit, depending on conditions. Thus, the effects of CO2 and nitrate (inhibition of reversible inactivation) are clearly manifested only in the light. In contrast, light stimulates the inactivation in the presence of oxygen and the absence of CO2 and nitrate. Since the inactivation of the enzyme requires HCN and NADH, and it is improbable that O2 stimulates NADH formation, it is reasonable to conclude that HCN is formed as the result of an oxidation reaction (which is stimulated by light). The formation of HCN is probably stimulated by Mn2+, since the formation of reversibly-inactivated enzyme is impaired in Mn2+-deficient cells. The prevention of enzyme inactivation by nitrate in vivo is in keeping with previous in vitro results showing that nitrate prevents inactivation by maintaining the enzyme in the oxidized form. A stimulation of nitrate uptake by CO2 and light could account for the effect of CO2 (prevention of inactivation) which is seen mainly in the presence of nitrate and light. Ammonia added in the presence of nitrate has the same effect on the enzyme as removing nitrate (promotion of reversible inactivation). Ammonia added in the absence of nitrate has little extra effect. It is therefore likely that ammonia acts by preventing nitrate uptake. The uncoupler, carbonylcyanide-m-chloro-phenylhydrazone, causes enzyme inactivation because it acts as a good HCN precursor, particularly in the light. Nitrite, arsenate and dinitrophenol cause an enzyme inactivation which can not be reversed by ferricyanide in crude extracts. This suggests that there are at least two different ways in which the enzyme can be inactivated rather rapidly in vivo.  相似文献   

16.
The reversible hydrogenase from Anabaena 7120 appeared when O2 was continuously removed from a growing culture. Activity increased further when cells were incubated under argon in the dark or in the light plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Hydrogenase existed in an inactive state during periods of O2 evolution. It could be reductively activated by exposure to reduced methyl viologen or by dark, anaerobic incubation. Hydrogenase-containing cells evolved H2 slowly during dark anaerobic incubations, and the rate of H2 evolution was increased by illumination with low intensity light. Light enhancement of H2 evolution was of short duration and was eliminated by the ferredoxin antagonist disalicylidene diaminopropane. Physiological acceptors that supported H2 uptake included NO3, NO2, and HSO3, and light had a slight influence on the rate of H2 uptake with these acceptors. Low levels of O2 supported H2 uptake, but higher concentrations of O2 inactivated the hydrogenase. Hydrogen uptake with HCO3 as acceptor was the most rapid reaction measured, and it was strictly light-dependent. It occurred only at low light intensities, and higher light intensities restored normal O2-evolving photosynthesis. It is suggested that hydrogenase is present to capture exogenous H2 as a source of reducing equivalents during growth in anaerobic environments.  相似文献   

17.
A rapid and internally consistent technique has been developed to measure the volumetric oxygen transfer coefficient, kLa, in fermentation systems. The method consists of tracing the dissolved O2 concentration of the fermentation broth during a short interruption of the aeration. The O2 concentration trace thus obtained can be analyzed to determine the values of kLa. Additional experiments on prolonged O2 starvation, carried out to find the limitation of the technique, suggest that O2 uptake rate will vary if a prolonged (2–10 min.) O2 starvation occurs.  相似文献   

18.
A dead dried alga, Chlorella sp., was used for the uptake of Cr+3, Cr2O7 ?2, Cu+2, and Ni+2 from the aqueous solutions of these metal ions. The equilibrium data were fitted using the Langmuir and Freundlich isotherm model and the maximum uptakes for Cr+3, Cr2O7 ?2, Ni+2, and Cu+2 were 98, 104, 108, and 183 mg/g, respectively. The Freundlich model, in comparison to the Langmuir model, better represented the sorption process. The kinetics of metal ions uptake by Chlorella sp. was best described by a pseudo-second order rate equation. Infrared spectroscopic data were employed to identify the site(s) of bonding in Chlorella sp. A scanning electron microscopic (SEM) study of pure dead Chlorella sp. and the species treated with different metal ions provided an idea of the extent of metal uptake by this species. The dead Chlorella sp took up maximum Cu(II). The size of the cell of the metal-treated Chlorella sp. obtained from SEM data is in agreement with the extent of metal uptake.  相似文献   

19.
Synopsis Gill ventilation, breathing frequency, breath volume, oxygen extraction from the ventilatory water current and oxygen uptake through the gills were measured in flounder, Platichthys flesus, and plaice, Pleuronectes platessa, at water O2 tensions ranging from 35 to 155 mm Hg at 10° C. Ventilation volumes were similar in the two species at high water O2 tension. Exposure to hypoxic water elicited a larger increase in ventilation in the flounder. The per cent extraction of O2 from water decreased slightly in both species as water O2 tension was lowered. At comparable levels of ventilation O2 extraction was higher in flounder. At the higher levels of water O2 tension, O2 uptake across the gills of flounder was stable, the critical O2 tension being between 60 and 100 mm Hg. The plaice behaved as an oxygen conformer over the entire range of O2 tensions investigated. The superior ability of the flounder in maintaining OZ uptake across the gills during a reduction in water O2 tension may in part explain why the species, unlike plaice, inhabits very shallow waters with large fluctuations in dissolved oxygen.  相似文献   

20.
Two millimeter long secondary root tips of etiolated mung bean (Phaseolus aureus) plants were given 4 minute consecutive treatments of darkness, red light, far red light, and acetylcholine during darkness. We studied the effects of these treatments on exogenous (H+) changes, ATP utilization, O2 uptake, P1 levels, and ATPase activity. Red light and acetylcholine increased the level of P1, O2 uptake, and exogenous H+, but decreased ATP concentrations. Darkness and far red light caused the amount of ATP to increase and decreased the O2 uptake and P1 level. O2 uptake of both excised root tips and isolated mitochondria was promoted by acetylcholine levels of the same order of magnitude that promoted the other photomimetic phenomena. ADP-O ratios indicated that acetylcholine did not cause an appreciable decrease in ATP synthesis. The total ATPase activity remained constant throughout all treatments. Ouabain caused no adhesion to negatively charged glass in the dark, while the inhibitors valinomycin, atractyloside, digitoxin, gramicidin, and oligomycin caused immediate adhesion. All of the inhibitors prevented release from the glass. In red light ouabain increased adhesion, whereas the other inhibitors caused caused immediate and complete adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号