首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of bryology》2013,35(1):97-99
Abstract

(1) Net assimilation and respiration rates were measured at intervals after re-moistening, following various periods of desiccation, in Hookeria lucens, Hylocomium splendens, Neckera crispa, Plagiochila spinulosa, Plagiothecium undulatum, Rhacomitrium lanuginosum, Rhytidiadelphus loreus, Saccogyna viticulosa, Scorpiurium circinatum and Tortula ruraliformis.

(2) Rhacomitrium lanuginosum was extremely resistant, recovering apparently normally after 239 days' desiccation at 32% R.H.; Plagiochila spinulosa and Hookeria lucens were the most sensitive.

(3) Rhacomitrium lanuginosum and Tortula ruraliformis were most quickly damaged at the highest humidity (76%) and Plagiothecium undulatum at the lowest humidity tested (32%).

(4) Saccogyna viticulosa and Scorpiurium circinatum combined relatively rapid impairment and slow recovery of assimilation with the capacity to survive long dry periods.

(5) Dark respiration was relatively slow (commonly c. 5–20% of net assimilation). It usually showed a slight initial stimulation and a longer-term build-up following moderate or prolonged desiccation.

(6) Desiccation responses of bryophytes can be characterized in terms of parameters defining rate of loss of photosynthetic capacity with desiccationtime, rate of recovery after short periods of desiccation, and survival.  相似文献   

2.
The functional roles of the contrasting morphologies of sun and shade shoots of the evergreen shrub Heteromeles arbutifolia were investigated in chaparral and understory habitats by applying a three-dimensional plant architecture simulation model, YPLANT. The simulations were shown to accurately predict the measured frequency distribution of photosynthetic photon flux density (PFD) on both the leaves and a horizontal surface in the open, and gave reasonably good agreement for the more complex light environment in the shade. The sun shoot architecture was orthotropic and characterized by steeply inclined (mean = 71o) leaves in a spiral phyllotaxy with short internodes. This architecture resulted in relatively low light absorption efficiencies (E A) for both diffuse and direct PFD, especially during the summer when solar elevation angles were high. Shade shoots were more plagiotropic with longer internodes and a pseudo-distichous phyllotaxis caused by bending of the petioles that positioned the leaves in a nearly horizontal plane (mean = 5o). This shade-shoot architecture resulted in higher E A values for both direct and diffuse PFD as compared to those of the sun shoots. Differences in E A between sun and shade shoots and between summer and winter were related to differences in projection efficiencies as determined by leaf and solar angles, and by differences in self shading resulting from leaf overlap. The leaves exhibited photosynthetic acclimation to the sun and the shade, with the sun leaves having higher photosynthetic capacities per unit area, higher leaf mass per unit area and lower respiration rates per unit area than shade leaves. Despite having 7 times greater available PFD, sun shoots absorbed only 3 times more and had daily carbon gains only double of those of shade shoots. Simulations showed that sun and shade plants performed similarly in the open light environment, but that shade shoots substantially outperformed sun shoots in the shade light environment. The shoot architecture observed in sun plants appears to achieve an efficient compromise between maximizing carbon gain while minimizing the time that the leaf surfaces are exposed to PFDs in excess of those required for light saturation of photosynthesis and therefore potentially photoinhibitory. Received: 8 June 1997 / Accepted: 2 November 1997  相似文献   

3.
M. E. Wilson 《Polar Biology》1990,10(5):337-341
Summary Photosynthetic capacity, chlorophyll content and leaf and cell morphology were compared in Grimmia antarctici from wet and dry sites in the Bailey Peninsula SSSI, near Casey Station, East Antarctica. In wet sites G. antarctici grew as a turf with tall shoots of loosely packed long leaves: in very dry sites it formed small cushions with short shoots of small tightly packed leaves. Intermediate forms (large cushions) were also frequently observed in less extreme situations. Cell size and number were greater in drier sites. The chlorophyll content, chlorophyll a/b ratio and the light saturated photosynthetic and dark respiration rates at full turgor and under enhanced conditions of CO2 were the same. This rules out a direct effect of water stress on the integrity of the photosynthetic apparatus and implies that the cushion form is a product of direct effects of water availability on cell division and differentiation and CO2 assimilation under field conditions.  相似文献   

4.
Photosynthetic acclimation was studied in seedlings of three subtropical rainforest species representing early (Omalanthus populifolius), middle (Duboisia myoporoides) and late (Acmena ingens) successional stages in forest development. Changes in the photosynthetic characteristics of pre-existing leaves were observed following the transfer of plants between deep shade (1–5% of photosynthetically active radiation (PAR), selectively filtered to produce a red/far-red (R/FR) ratio of 0.1) and open glasshouse (60% PAR and a R/FR ratio of 1.1–1.2), and vice versa. The extent and rate of response of the photosynthetic characteristics of each species to changes in light environment were recorded in this simulation of gap formation and canopy closure/overtopping. The light regimes to which plants were exposed produced significant levels of acclimation in all the photosynthetic parameters examined. Following transfer from high to low light, the light-saturated rate of photosynthesis was maintained near pre-transfer levels for 7 days, after which it decreased to levels which closely approximated those in leaves which had developed in low light. The decrease in photosynthetic capacity was associated with lower apparent quantum yields and stomatal conductances. Dark respiration was the parameter most sensitive to changes in light environment, and responded significantly during the first 4–7 days after transfer. Acclimation of photosynthetic capacity to increases in irradiance was significant in two of the three species studied, but was clearly limited in comparison with that of new leaves produced in the high light conditions. This limitation was most pronounced in the early-successional-stage species, O. populifolius. It is likely that structural characteristics of the leaves, imposed at the time of leaf expansion, are largely responsible for the limitations in photosynthetic acclimation to increases in irradiance.  相似文献   

5.
Effect of Fruiting on Leaf Gas Exchange in Olive (Olea Europaea L.)   总被引:1,自引:0,他引:1  
The effect on traits of photosynthesis and water relations of assimilate demand was studied in olive tree that has strong alternate bearing. The diurnal and seasonal leaf gas exchanges, area dry mass, and saccharide and chlorophyll (Chl) contents were measured by comparing shoots with fruit of "on-trees" (heavy fruit load) with shoots without fruit on both "on-trees" and "off-trees" (light fruit load). In spite of large seasonal and diurnal differences, leaf net photosynthetic rate (P N), stomatal conductance (g s), sub-stomatal CO2 concentration (C 1), transpiration rate (E), and respiration rate (R D) were not significantly influenced by fruit load or by the presence or absence of fruit on the shoot. An only exception was at the beginning of July when the one-year-old leaves on shoots with fruit had slightly higher P N and E than leaves on shoots without fruit. Water content, Chl and saccharide contents, and area dry mass of the leaf were not substantially influenced by the presence/absence of fruit on the shoot or fruit load. Hence the sink demand, associated with fruit growth, did not improve leaf photosynthetic efficiency in olive. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In tropical rainforests, the increased light associated with the formation of treefall gaps can have a critical impact on the growth and survivorship of understory plants. Here we examine both leaf-level and whole-plant responses to simulated light gap formation by two common shade-tolerant shrubs, Hybanthus prunifolius and Ouratea lucens. The species were chosen because they differed in leaf lifespans, a trait that has been correlated with a number of leaf- and plant-level processes. Ouratea leaves typically live about 5 years, while Hybanthus leaves live less than 1 year. Potted plants were placed in the understory shade for 2 years before transfer to a light gap. After 2 days in high light, leaves of both species showed substantial photoinhibition, including reduced CO2 fixation, F v/F m and light use efficiency, although photoinhibition was most severe in Hybanthus. After 17 days in high light, leaves of both species were no longer photoinhibited. In response to increased light, Ouratea made very few new leaves, but retained most of its old leaves which increased photosynthetic capacity by 50%. Within a few weeks of transfer to high light, Hybanthus had dropped nearly all of its shade leaves and made new leaves that had a 2.5-fold greater light-saturated photosynthetic rate. At 80 days after transfer, the number of new leaves was 4.9-fold the initial leaf number. After 80 days in high light, Hybanthus had approximately tenfold greater productivity than Ouratea when leaf area, photosynthetic capacity, and leaf dark respiration rate were all taken into account. Although both species are considered shade tolerant, we found that their growth responses were quite different following transfer from low to high light. The short-lived Hybanthus leaves were quickly dropped, and a new canopy of sun leaves was produced. In contrast, Ouratea showed little growth response at the whole-plant level, but a greater ability to tolerate light stress and acclimate at the leaf level. These differences are consistent with predictions based on leaf lifespan and are discussed within the context of other traits associated with shade-tolerant syndromes. Received: 25 March 1999 / Accepted: 16 August 1999  相似文献   

7.
The association between the parasite Striga gesnerioides and cowpea (Vigna unguiculata) was investigated using measurements of growth and gas exchange together with calculations of the carbon budget of the association. Striga gesnerioides has a very low photosynthetic capacity coupled with high rates of respiration. Even at photosynthetic light saturation shoots exhibit no net carbon gain. Thus S. gesnerioides is highly dependent on its host for carbon as well as for water and inorganic solutes. It is estimated that 70% of the carbon transferred from host to parasite is used in parasite respiration. Infected cowpea had a lower photosynthetic capacity, at times less than half that of uninfected plants. Infection with S. gesnerioides reduced the growth of cowpea by 75%. Calculations indicate that the loss of carbon from the host by export to the parasite is more important than reduced photosynthetic capacity of the host in accounting for the observed growth reductions.  相似文献   

8.
Measurements of net photosynthetic rate (at 1450µ molm-2s-1photosynthetically active radiation) of leaves, of leafand stem respiration, and of shoot growth of potentially-fruitinglaterals on kiwifruit (Actinidia deliciosa ) were used to estimateweekly shoot carbon balances over the first 10 weeks of shootgrowth (budburst to anthesis). Consistent differences in therate of shoot elongation, of internode expansion and of increasein basal diameter were found among shoots. Faster-growing (long)shoots acquired carbon by photosynthesis at a faster rate evenin the first few weeks after budburst, but the amount of carbonrequired to sustain this growth resulted in shoot carbon deficitswhich were approx. seven times greater than those of the slower-growing(short) shoots. It was estimated that the transition from shootcarbon deficit to carbon surplus occurred 3–4 weeks afterbudburst, irrespective of shoot growth rate. As a result ofsubsequent rapid increases in shoot photosynthetic rate, longshoots had a shoot carbon surplus of 4.4 g C week-1in the weekbefore anthesis, approx. three times that of the short shoots.Defoliation (66%) of shoots 1 week after budburst, and subsequentremoval of later-emerging leaves to maintain the level of defoliation,had the effect of slowing shoot growth in the carbon deficitperiod, particularly for the long shoots. However, the durationof shoot expansion in the defoliated shoots was longer, resultingultimately in shoots which were longer than the control shoots.Linkages among early carbon balance dynamics of shoots, shootlength at anthesis, and fruit growth are discussed. Actinidia deliciosa ; kiwifruit; shoot growth; carbon acquisition; respiration; photosynthesis  相似文献   

9.
The rate and sensitivity to inhibitors (KCN and salicylhydroxamic acid[SHAM]) of respiratory oxygen uptake has been investigated in photosynthetic organs of several freshwater aquatic plant species: six angiosperms, two bryophytes, and an alga. The oxygen uptake rates on a dry weight basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant, the percentage of resistance being higher than 50% with very few exceptions. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower and ranged between 25 and 50%. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was not stimulated by sucrose, malate or glycine in the absence of the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP), but was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide-resistant rate of O2 uptake was also increased by the uncoupler.  相似文献   

10.
Seasonal changes in leaf gas exchange, assimilation response to light and leaf area were monitored in bearing and nonbearing pistachio shoots. Shoot bearing status did not directly affect leaf photosynthetic rate. However, photosynthetic light-response curves strongly varied during the season demonstrating the dominant effect of the tree’s seasonal phenology on assimilation. Early in the season low photosynthetic rates were associated with high rates of dark respiration indicating limited photosynthesis in the young leaves. As leaves matured, dark respiration decreased and assimilation reached maximum values. Photosynthetic efficiency was strongly reduced late in the season due to leaf age and senescence. Fruit load precipitated an early leaf senescence and drop that resulted in a 53% decrease in leaf area in bearing vs. nonbearing shoots, strongly decreasing the seasonal photosynthetic performance of bearing shoots. Bearing shoots produced a 26% lower seasonal carbon gain compared to nonbearing shoots.  相似文献   

11.
Savchenko  Tatyana  Yanykin  Denis  Khorobrykh  Andrew  Terentyev  Vasily  Klimov  Vyacheslav  Dehesh  Katayoon 《Planta》2017,245(6):1179-1192
Main conclusion

This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions.

Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites—does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.

  相似文献   

12.
《Journal of bryology》2013,35(3):551-563
Abstract

The physiological response of Hylocomium splendens (Hedw) Br. Eur. to incubation in distilled water and solutions of phosphate, arsenate, selenite and selenate was investigated. Potassium efflux was found useful for comparing toxicity but was unreliable for short-term studies due to an initial rapid loss of potassium within ten minutes of immersion in any solution. This potassium loss could, under noninhibitory conditions, be regained by moss shoots. Selenite prevented re-accumulation of potassium lost in the first few minutes of incubation whilst arsenate promoted potassium loss throughout incubation. Photosynthetic oxygen evolution was progressively reduced under conditions of increasing arsenic uptake. Thus, photosynthetic rates were a more sensitive measure of anion toxicity than potassium efflux.

Electron microscopic observations revealed that incubation in distilled water had little effect on immature leaves of H. splendens whilst arsenate incubation induced loss of cytoplasmic electron density and swelling of chloroplast lamellae in immature tissue. Mature leaves, incubated in both arsenate and distilled water, showed changes in celluar morphology compared to non incubated tissue. These changes were not reflected in potassium efflux data. The results indicate that shortterm submersion is disruptive to the fine structure of moss shoots. This is discussed in terms of the design and interpretation of experiments involving toxic ions.  相似文献   

13.
  • Melampyrum pratense is an annual root‐hemiparasitic plant growing mostly in forest understorey, an environment with unstable light conditions. While photosynthetic responses of autotrophic plants to variable light conditions are in general well understood, light responses of root hemiparasites have not been investigated.
  • We carried out gas exchange measurements (light response and photosynthetic induction curves) to assess the photosynthetic performance of M. pratense in spring and summer. These data and recorded light dynamics data were subsequently used to model carbon balance of the hemiparasite throughout the entire growth season.
  • Summer leaves had significantly lower rates of saturated photosynthesis and dark respiration than spring leaves, a pattern expected to reflect the difference between sun‐ and shade‐adapted leaves. However, even the summer leaves of the hemiparasite exhibited a higher rate of light‐saturated photosynthesis than reported in non‐parasitic understorey herbs. This is likely related to its annual life history, rare among other understorey herbs. The carbon balance model considering photosynthetic induction still indicated insufficient autotrophic carbon gain for seed production in the summer months due to limited light availability and substantial carbon loss through dark respiration.
  • The results point to potentially high importance of heterotrophic carbon acquisition in M. pratense, which could be of at least comparable importance as in other mixotrophic plants growing in forests – mistletoes and partial mycoheterotrophs. It is remarkable that despite apparent evolutionary pressure towards improved carbon acquisition from the host, M. pratense retains efficient photosynthesis and high transpiration rate, the ecophysiological traits typical of related root hemiparasites in the Orobanchaceae.
  相似文献   

14.
Callister AN  Adams MA 《Planta》2006,224(3):680-691
In previous studies, water stress has induced variable and sometimes contradictory changes in respiration. We used isothermal calorimetry to measure the response of foliar respiration to water deficit in nine eucalypt genotypes. Specific growth rates (R SG) of shoots and leaves of variable age were measured independently, and the data were applied to both the growth-maintenance and enthalpy balance models. We calculated the oxidation state of respiratory substrate and the enthalpy change for the conversion of substrate carbon to biomass (ΔH B). Moderate water stress reduced the R SG of shoots by 38% (P<0.01) and carbon conversion efficiency by 15% (P<0.05). The relationship between carbon conversion efficiency and R SG was not affected by water deficit for shoots, but was significantly altered for leaves. Water deficit increased maintenance respiration by about 23% (P<0.001). The growth coefficient of respiration was not significantly altered. However, changes in oxidation states of substrate and biomass suggest that the energy requirements of biosynthesis were increased under water stress. Our results confirm that carbohydrates are the major respiratory substrates in growing tissues, though mature leaves utilized a substantial component of more reduced substrate. Mature leaves had variable oxidation states for respiration substrate, which indicates a variable relationship between CO2 evolution and ATP production. Measured ΔH B in shoots and leaves were too small for reliable estimation of R SG by the enthalpy balance model. We also found significant effects of water stress on the oxidation state of substrate and ΔH B.  相似文献   

15.
Abstract Photosynthetic and anatomical parameters of leaves from the juvenile and adult part of an ivy plant (Hedera helix L.) have been determined and compared with each other. Light-saturated net photosynthesis (per unit leaf area) was about 1.5 times higher in adult leaves than in juvenile ones. The lower photosynthetic capacity of juvenile leaves was caused by a lower stomatal and especially a lower residual conductance to the CO2-transfer. This corresponds with anatomical features of the leaves, i.e. lower stomatal frequency, fewer chloroplasts per cell, and – most important – thinner leaves, as well as with a less efficient photosynthetic apparatus measured as Hill reaction of isolated broken chloroplasts and activity of ribulose bisphosphate carboxylase. No differences in the respiration in light (relative to net photosynthesis) and in the CO2-compensation concentration could be detected between the two leaf types. These observed anatomical and photosynthetic parameters of the juvenile and adult ivy leaves resemble those reported for shade and sun leaves, respectively, although the leaves investigated originated from the same light environment.  相似文献   

16.
Current thinking holds that carbon autonomy of branches in trees is unlikely, particularly during bud break, when the new developing shoots require significant influx of carbon resources from more distant sources. Results from recent studies indicate that the impact of bud break on overall tree reserves might be small. In two studies the independence of flushing shoots from stored carbon reserves and the photosynthesis in developing new leaves and shoots of Populus tremuloides were explored. New developing shoots quickly became a positive carbon source and only a few days into flush, the photosynthetic system of the newly developing shoots was efficient enough to achieve positive carbon gain even at low light levels. Only 14% of the stored shoot reserves, without any mobilization from more distant reserves, were used during bud break and early shoot expansion. Without any underlying stress, shoots of deciduous trees appear to be carbon autonomous during bud break when demand on stored carbon should be the highest. The development of an efficient photosynthetic system in new shoots is critical in the recovery of carbon reserves in aspen. It minimizes the cost of bud break to the overall stored carbon reserves by optimizing the assimilation of carbon in the newly developed leaves, while eliminating the cost for mobilizing carbon reserves from more distant sources. This carbon autonomy of shoots has important implications for the whole tree carbon balance particularly to the non-photosynthetic tissues which functions solely depending on carbon export from the newly developing leaves and shoots.  相似文献   

17.
Katherine C. Larson 《Oecologia》1998,115(1-2):161-166
The impact of herbivores on host plant photosynthetic rates can range from negative to positive. While defoliation by chewing herbivores can result in increases in photosynthesis followed by compensatory growth, other herbivore guilds, such as mesophyll feeders which damage photosynthetic leaf tissues, almost always reduce photosynthetic rates. The impact of galling herbivores on host photosynthesis has rarely been examined, even though the limited tissue disruption and the strong metabolic sinks induced by gall-forming herbivores could potentially stimulate photosynthetic rates. I examined the hypothesis that gall-inducing herbivores could stimulate photosynthesis in neighboring leaves in response to increased sink-demand by the gall. To address this hypothesis, I measured photosynthetic rates of galled leaves or leaflets, neighboring ungalled leaves or leaflets, and ungalled leaves or leaflets on ungalled shoots on naturally growing Prunus serotina (wild cherry) and Rhus glabra (smooth sumac). The leaves of wild cherry were galled by an eriophyid mite, Phytoptus cerasicrumena; the leaves of smooth sumac by an aphid, Melaphis rhois. I found that both species reduced the photosynthetic rates of the leaves or leaflets they galled from 24 to 52% compared to ungalled leaves in ungalled areas of the plants. Contrary to my hypothesis, mite galls on wild cherry reduced photosynthesis of neighboring ungalled leaves within the same shoot by 24% compared to ungalled leaves on gall-free shoots. Aphid galls on sumac leaflets did not significantly alter the photosynthetic rates of neighboring leaflets relative to ungalled leaves on ungalled shoots. Although gall-formers would appear to have the potential to stimulate photosynthesis in the same manner as defoliating herbivores, i.e., by increasing sink demand relative to source supply, I found only negative impacts on photosynthesis. I suggest that sink competition for nutrients between developing leaves and growing gall tissue may account for the negative impacts of sink-inducing gallers on photosynthesis. Received: 17 October 1997 / Accepted: 2 February 1998  相似文献   

18.
Photosynthesis in tissues under periderm of woody stems and shoots of perennial plants occurs in environment that is very different from the internal environment of leaf chloroplasts. These tissues are characterized by high CO2 and low O2 concentrations, more acidic surroundings, besides that only light which have passed through periderm reaches photosynthetic antennas. In contrast to leaves of deciduous plants chlorenchyma tissues of wintering plant organs are exposed to temperature fluctuations during all seasons, that is why the photosynthetic apparatus of woody stems has to be able to adapt to a wide range of environmental temperatures. In order to reveal unique features, which enable photosynthetic apparatus of chlorenchyma cells in woody plant organs to implement biological functions under different light and temperature conditions, we studied photosynthetic tissues of stem cortex in grapevine (Vitis vinifera L.) under normal conditions and after exposure to suboptimal temperatures and high light intensity. Comparative analysis of photosynthetic pigment composition and low-temperature chlorophyll fluorescence emission spectrum of leaves, young shoots and chlorenchyma of lignified shoots revealed relatively high level of chlorophyll b and carotenoids, and high photosystem II (PSII) to photosystem I (PSI) ratio in woody shoots. Analysis of parameters of variable chlorophyll fluorescence revealed high PSII activity in grapevine shoot cortex and demonstrated improved freeze tolerance and higher sensitivity to light of photosynthetic apparatus in grape vine in comparison to leaves. It was shown for the first time that photosynthetic apparatus in chlorenchyma cells of vine undergoes so-called “state-transition”–fast rearrangements leading to redistribution of energy between photosystems. Analysis of fatty acid (FA) compositions of lipids in examined tissues showed that the FA unsaturation index in green tissue of vine is lower than in leaves. A distinct feature of FA compositions of lipids in vine cortex was relatively high level of linoleic acid.  相似文献   

19.
《Journal of bryology》2013,35(2):279-284
Abstract

Photosynthetic activity of attached sporophytes is very low (a few per cent or less) compared with that of associated gametophyte structures (perianth, bracts and uppermost leaves) in Cephalozia bicuspidata and Lophocolea heterophylla, or with even small areas of thallus in Pellia epiphylla. Photosynthetic uptake of 14CO2 by developing sporophytes of P. epiphylla, C. bicuspidata and L. heterophylla is at most a few per cent of the 14C translocated subsequently from the gametophyte, and could be negligible. In L. heterophylla, the perianth, bracts and uppermost leaves appear to play only a limited role in nutrition of the sporophyte, the leafy shoots making a major contribution. In C. bicuspidata the perianth and leaves of the short archegonial shoot may provide a substantial part of the nutrition of the sporophyte. There is some indication in all three species that translocation from the gametophyte is most active when the sporophyte reaches full size but is still green, declining in the final stages of maturation of the capsule.  相似文献   

20.
Summary Photosynthetic capacities and respiration rates of Alocasia macrorrhiza leaves were measured for 4 weeks following reciprocal transfers between high (20% of full sun) and low (1% of full sun) light environments. Photosynthetic capacities and respiration rates of mature, high-light leaves were 1.7 and 4.5 times those of low-light leaves, respectively. Following transfer, respiration rates adjusted within 1 week to those characteristic of plants grown in the new environment. By contrast, photosynthetic capacities either did not adjust or changed only slowly following transfer. Most of the difference in respiration between high- and low-light leaves was related to the carbohydrate status as determined by the daily PFD and little was directly related to the maintenance costs of the photosynthetic apparatus. Leaf construction cost was directly proportional to maximum photosynthetic capacity. Consequently, although daily carbon gain per unit leaf area was the same for low-light and high to low-light transferred plants within a week after transfer, the carbon return per unit of carbon investment in the leaves remained lower in the high to low transfer plants throughout the 4 week measurement period. Conversely, in high-light, the low leaf construction cost of the low to high-light transferred plants resulted in carbon gain per unit investment just as high as that of the high-light plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号