首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Martínez  M. Luisa  Maun  M.A. 《Plant Ecology》1999,145(2):209-219
Sand movement is a predominant feature of mobile coastal and lake-shoreline sand dunes. Plants growing in these environments are able to withstand and survive periods of burial by sand. Although mosses are important dune stabilizers in temperate dunes, there are few studies focused on their response to burial by sand. In this study we examined the effects of burial by sand on 11 moss species that grow naturally on Lake Huron sand dunes and occur in a gradient of habitats from the foredunes along the shore to forested areas. Artificial burial treatments (sand depth of 0, 1, 3, 5 and 7 cm) were imposed under greenhouse and field conditions. We measured final plant cover and calculated the speed of emergence and an interpretive index (tolerance index) to compare burial responses among species by calculating a burial ratio which standardized the initial size of each species. In the greenhouse, Ceratodon purpureus and Ditrichum flexicaule recorded the highest mean speeds of emergence and Dicranum scoparium, Plagiothecium laetum, Dicranum flagellare and Brachythecium sp. 1 the lowest. In the field the trends were similar although the speed of emergence was much slower. Three types of response to burial were evident in plant cover: neutral, inhibition and stimulation. Although all eleven studied species were able to emerge from the different depths of burial, we observed that species colonizing areas with high sand mobility and deposition (C. purpureus and D. flexicaule) were the most tolerant and emerged from depths of up to 35 times their height. Species growing inland, at the base of trees (Dicranum scoparium, Brachythecium sp. 2, Plagiomnium cuspidatum and Dicranum flagellare) showed the least tolerance of burial.  相似文献   

2.
Yajuan Zhu  Ming Dong  Zhenying Huang   《Flora》2007,202(3):249-257
Leymus secalinus (Georg.) Tzvel. (Poaceae) is a dominant sand dune grass inhabiting the Mu-Us Sandland, semiarid China. Freshly harvested caryopses (seeds) are in non-deep physiological dormancy (non-deep PD) because of low percentage and slow rate of germination. Experiments were conducted to examine the effects of temperature, cold stratification, caryopsis coat scarification or partial removal of endosperm and sand burial on caryopsis dormancy, germination and seedling emergence. Caryopsis germination was significantly influenced by duration of cold stratification, temperature and their interactions. After 8 weeks of cold stratification, caryopsis germination percentage at 30 °C reached to 90%, equally in light or darkness. Rate and percentages of germination were also hastened and increased by scarifying the caryopsis coat or by artificial removal of different proportions of the endosperm. However, seedling developmental characteristics were significantly influenced by the proportion of the endosperm that remained in the caryopses. Seedling emergence, caryopsis germination and enforced dormancy in sand were significantly affected by sand burial depth. As sand burial depth increased, caryopsis germination and seedling emergence decreased whereas caryopsis enforced dormancy increased. 1–2 cm was the optimal depths for caryopses germination and seedling emergence. Although there were still 30% caryopses germinated at 8 cm, the maximal burial depth for seedling emergence was only 4 cm. The partial germination strategy regulated by non-deep PD, temperature and sand burial ensures that only a few caryopses germinated each time and may reduce risks for seedling survival.  相似文献   

3.
该文研究了野外条件下不同深度的沙埋对沙鞭(Psammochloa villosa)种子萌发和幼苗出土的影响,以及温室条件下种子大小对不同深度沙埋后的种子萌发和幼苗出土的影响。结果表明,沙埋深度显著影响沙鞭的种子萌发率、幼苗出土率和种子休眠率。沙子表面的种子不能萌发。2 cm的浅层沙埋时的种子萌发率和幼苗出土率最高,1 cm 沙埋的种子萌发率和幼苗出土率次之。沙埋深度超过2 cm之后,沙鞭的种子萌发率和幼苗出土率与沙埋深度呈负相关。2 cm的种子休眠率最低。从2 ~12 cm,种子休眠率随着沙埋深度的增加而增加。在幼苗能够出土的深度(1~6 cm),幼苗首次出土所需的时间随着沙埋深度的增加而延长。种子大小对沙鞭的种子萌发率没有显著影响。但是在深层沙埋(6 cm)时,与小种子相比,大种子产生的幼苗的出土率较高。从2~6 cm,大种子形成的幼苗的茎长度都较长。  相似文献   

4.
We compared seedling growth of four Artemisia species dominated at different habitats to determine whether interspecific seedling growth variation of a same genus in tolerance to burial can be used to explain plant distribution in the sand dune field. Interdune lowland species, Artemisia gmelinii, stabilized dune species, A. frigida, semi-stabilized dune species, A. halodendron, and active dune species, A. wudanica were selected. Seedlings grown for 3 weeks were treated at five burial depths for three burial times in pot experiments. Species from the habitats with little burial had smaller survival rate, dry weight and stem elongation speed than those from the habitats with intensive burial when buried. Furthermore, when buried, the former tended to adjust biomass allocation between shoot and root and produce adventitious buds, while the latter tended to maintain a constant root:shoot ratio and produce adventitious roots. We conclude that (1) seedlings of species with a long evolutionary history of exposure to sand burial (from the active sand dune), show quicker stem growth when buried than do seedlings of species from the habitats with little or no sand burial; (2) seedlings of species which do not change root:shoot ratio might be more tolerant of sand burial than those do; (3) seedlings of species from the habitats with intensive sand burial is prone to produce adventitious roots and seedlings of species from the habitats with little or no sand burial tend to produce adventitious buds when buried.  相似文献   

5.
Q.Y. Li  W.Z. Zhao  H.Y. Fang 《Plant Ecology》2006,185(2):191-198
A greenhouse experiment was conducted to test the effects of sand burial depth and seed mass on seedling emergence and growth of Nitraria sphaerocarpa. Seeds of Nitraria sphaerocarpa were sorted into three size-classes (large, medium, small) and artificially buried at 0, 1, 2, 3, 4, 5 and 6 cm depths in plastic pots filled with unsterilized sand. In the seven treatments, the percent emergence, seedling mass and seedling height, significantly affected by both burial depth and seed size, were highest at the optimal burial depth of 2 cm burial depth, and decreased with increasing burial depth in each seed size-class. Although seedling mass was usually greatest for large seeds and least for small seeds at each burial depth, little difference was observed in seedling height at shallow burial depths of 0–3 cm. In each seed size-class, with increasing burial depth, both root-mass ratio and aboveground stem-mass ratio decreased, while belowground stem-mass ratio increased. In each burial depth, with decreasing seed size, belowground stem-mass ratio increased, while root-mass ratio decreased.  相似文献   

6.
Studies in the field and in a greenhouse were conducted to examine the effects of sand burial on seed germination, seedling emergence and establishment of Panicum virgatum L. on the foredunes of Lake Erie. Under natural conditions, the seedlings emerged from sand burial depths ranging from 0 to 11 cm, with a mean ± SD of 4.73 ± 1.82 cm. The frequency distribution of the depth of emergence of seedlings in the field was significantly skewed to the right and platykurtic. In the greenhouse, some seedlings emerged from a burial depth of as much as 16 cm. Although percent germination of seeds was not affected by sand burial, the percent emergence and the rate of emergence of seedlings were significantly reduced by excessive sand burial. Seedling mortality was found only among seedlings that emerged from sand burial depths of 10 cm or more. In the field, all the seedlings established in one growing season had originally emerged from sand burial depths of less than 12 cm. Within this burial range, seedlings from shallower burial depths had lower chances of establishment than expected, whereas those from deeper burial depths had higher probabilities of establishment than expected.  相似文献   

7.
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air‐filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.  相似文献   

8.

Aims

Seed germination and seedling emergence are vulnerable to water stress in arid environments. When precipitation is low and unpredictable during the early growing season, seeds near the sand surface often suffer from hydration/dehydration during germination. We investigated the responses of seedling emergence and survival of a sand dune grass with high sand stabilization value to amount and frequency of precipitation and depth of burial in sand.

Methods

Effects of amount and frequency of precipitation, burial and hydration/dehydration on seedling emergence of Leymus secalinus, were examined using standard procedures.

Results

Seedling emergence was affected by amount and frequency of monthly precipitation and depth of burial, and it decreased as precipitation frequency decreased with same amount of precipitation. Highest emergence percentage was obtained with 100 or 150 mm precipitation at 1–4 cm depth. Hydration/dehydration treatments decreased germination and increased dormancy percentage. Young seedlings with root lengths of 0–1 mm desiccated up to 30 days revived after rehydration.

Conclusions

Seedling emergence of L. secalinus is adapted to 150 mm monthly precipitation with frequency of 10–30 times per month, 1–4 cm burial depth and dehydration interval of 1–2 days. Alteration of amount and/or frequency of precipitation caused by climate change could markedly affect seedling emergence and population regeneration of this species.  相似文献   

9.
Four dominant psammophyte species are air-seeded in attempts to revegetate the Mu Us sandy land in Inner Mongolia, but seedling emergence is low. This study sought to clarify the behaviour of seedling emergence under different water supply and sand burial regimes to improve the technology of air seeding. Seeds were buried in sand at depths of 0, 0.5, 1, 1.5, 2, 3 and 5 cm and supplied one time with 2.5, 5, 7.5, 10, 15, 20, 30 or 40 mm of water or with 2.5 mm once every 3 days for 30 days. Our study showed that a 0.5-cm burial depth and under 10- to 20-mm single-watering regimes resulted in highest seedling emergence percentage and rate of these four species. All emerged seedlings of Caragana korshinskii , Hedysarum laeve and Artemisia ordosica died under 2.5, 5 and 7.5 mm of watering, respectively, but seedling mortality was <50% when the single-watering regime was >10 mm. In the field, germination of the four species increased from the top of the dune to the middle of the leeward side and then to the bottom. Based on precipitation pattern in the Mu Us sandy land, our study indicates that 0.5-cm burial depth and a single-watering regime of >7.5 mm is the threshold condition for seedling emergence.  相似文献   

10.
Seedling emergence of 12 selected northern jarrah (Eucalyptus marginata Donn ex Smith) forest species were investigated to assist Alcoa of Australia Ltd. in maximizing the establishment of topsoil species in rehabilitated bauxite mining sites. The species, which encompassed a range of seed weights (0.024 mg to 87 mg), plant families, seed-storage types, life forms, and germination requirements, were placed on the soil surface and at depths of 1, 2, 5, 10, and 15 cm under controlled conditions in a glasshouse. Ability to emerge from deep burial was found to depend on seed size for species that annually release their seed to the topsoil but not for species that store their seed on the plant. All selected species were capable of emerging from 2 cm depth of burial, but eight of the 12 species were either unable to emerge from 5 cm or showed a significant reduction in emergence from 5 cm depth of burial compared to optimally buried seed. This group included two small-seeded species, Stylidium calcaratum and Chamaescilla corymbosa; the major forest dominant, Eucalyptus marginata; the serotinous canopy-borne seed of Hakea amplexicaulis; and the wind-dispersed seed of Xanthorrhoea gracilis. A few seeds of the legume species Kennedia coccinea, Acacia pulchella, and Bossiaea aquifolium established seedlings from depths of 15 cm. Currently, Alcoa removes the upper 15 cm of topsoil separately from the underlying soil prior to the commencement of mining. This topsoil is respread at a similar depth following mining as part of the rehabilitation procedure. It is recommended that Alcoa continue to strip topsoil to a depth of 15 cm but investigate the option of re-spreading topsoil onto rehabilitated pits at a shallower depth to maximize establishment via the soil seed bank.  相似文献   

11.
Abstract Spinifex sericeus is a clonal, perennial, dioecious, coastal foredune grass that is often used in beach rehabilitation programmes. The objectives of this study were to: (i) investigate the germination behaviour of S. sericeus; and (ii) examine the occurrence and survivorship of 5. sericeus seedlings in the dune systems on the mid-north coast of NSW. Diaspores and naked caryopses of S. sericeus require darkness for germination. Diaspore germination is adversely affected by leaching, probably due to the creation of anaerobic conditions around the caryopsis. Seedling emergence occurs mainly on the front of the foredune, as this is an area of active sand accretion and burial is necessary for germination. The presence of a hypocotyl allows germination and emergence from depths as great as 12.5 cm. In the two populations studied, seedling survival was low and probably made little contribution to population recruitment. The factors that appear to be responsible for the high mortality rate of seedlings are sand erosion, sand deposition and desiccation.  相似文献   

12.
In arid and semi-arid sand dune ecosystems, belowground bud bank plays an important role in population regeneration and vegetation restoration. However, the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied. In arid sand dunes of Northwestern China, we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors (soil moisture, total carbon and total nitrogen) under different depths of sand burial. Total buds and rhizome buds increased significantly with increasing burial depth, whereas tiller buds first increased and then decreased, with a peak value at the depth of 20–30 cm. Soil moisture increased significantly with sand burial depth, and was positively correlated with the number of all buds and rhizome buds. Soil total carbon concentration first increased and then decreased with sand burial depth, and total nitrogen concentration was significantly lower under deep sand burial than those at shallow depths, and only the number of tiller buds was positively correlated with soil total nitrogen concentration. These results indicate that soil moisture rather than soil nutrient might regulate the belowground bud bank of P. villosa, and that clonal psammophytes could regulate their belowground bud bank in response to sand burial and the most important environmental stress (i.e., soil moisture). These responses, as the key adaptive strategy, may ensure clonal plant population regeneration and vegetation restoration in arid sand dunes.  相似文献   

13.
We determined the effects of shade, burial by sand, simulated herbivory, and fertilizers on the survival and growth of artificially planted population of Cirsium pitcheri—an endangered plant species of the sand dunes along Lake Huron. Sand burial experiments showed that greenhouse grown plants should optimally be transplanted into areas receiving 5 cm of sand deposition: burial at this depth maximized emergence, survivorship, and below‐ground biomass. Under field conditions, simulated herbivory of up to 50% of the plant height produced a slight increase in biomass after one year of growth. Field observations showed that when white‐tailed deer removed more than 50% of the transplant's leaf tissue, the plant died. The application of a 20:20:20 (N:P:K) water‐soluble fertilizer produced a significant increase in the dry leaf biomass, total leaf area, and total dry biomass relative to control plants. We also tested for the presence or absence of a persistent seed bank. Few seeds were recovered from soil samples collected from Pinery Provincial Park and Providence Bay. However, C. pitcheri has the ability to form a persistent seed bank under field conditions but only at soil depths of 15 cm. Cirsium pitcheri seeds are able to germinate and seedlings can emerge from a burial depth of up to 6 cm. Thus, seeds planted in open, sunny areas will probably maximize emergence, growth, and survivorship of seedlings. Populations of C. pitcheri can be restored by planting seeds at shallow depths, transplanting greenhouse‐grown plants, applying water soluble fertilizers, and protecting plants from herbivores.  相似文献   

14.
Sediment deposition is a common phenomenon in the estuary area. Pot control experiments were conducted to evaluate the interaction effects of sediment burial depth and salt stress on the seed germination and early seedling growth of Suaeda salsa (L.) Pall., an pioneer species of tidal wetland near the Yellow River Delta. The results showed that the percentage of seedling emergence, seedling emergence rate, seedling height, branch number, shoot biomass and root biomass were all significantly affected by salt stress and sediment burial depth. While the interaction of salt and burial depth significantly influenced the branch number, leaf biomass, shoot biomass and total plant biomass. Only 5 cm burial depth without salt stress should 6.25 ± 3.61% seedlings emergence. With the increasing of sediment burial depth and salt stress, percentage of seedling emergence, seedling emergence rate and plant height decreased significantly. However, under the salt treatment of 0 and 1%, the branch number increased dramatically with the increasing of sediment burial depth from 0 to 3 cm. The ratio of leaf to total biomass increased with increasing of burial depth, on the contrary, the ratio of root to total biomass decreased. 0–1 cm sediment burial depth was proved the suitable depths for seed germination of S. salsa in the coastal wetland of the Yellow River Delta. Our findings contribute to a better understanding of how to improve the seedling establishment of S. salsa under the dynamic changes of sediment deposition and salinity in the coastal wetland of the Yellow River Delta.  相似文献   

15.
李强 《生态学报》2016,36(1):200-208
三峡库区消落带植物恢复不仅面临长期淹水逆境,还面临泥沙、干旱等环境因素的胁迫。蓄水期后引种三峡库区消落带狗牙根,掩埋于不同粒径和埋深的沉降泥沙,探讨泥沙掩埋、干旱对反季节淹水后狗牙根出苗和生长恢复的影响。结果表明:在埋深≥8cm和粒径1.25 mm条件下消落带狗牙根萌发苗不能穿透覆盖层出苗。泥沙掩埋导致狗牙根出苗率显著降低,随着埋深增加狗牙根出苗率迅速下降;并且在埋深相同的条件下随着粒径减小狗牙根出苗速率呈增大趋势。随着埋深增加和粒径减小处理组株高、叶长的增长显著被抑制,处理组的株高、叶片数、叶长显著低于对照组。随着干旱、泥沙掩埋复合胁迫时间延长狗牙根分株株高、叶片数、叶长、叶宽的生长发育显著被抑制,且随着泥沙粒径减小和埋深增加其光合电子传递速率呈显著降低趋势,热耗散量显著增大。同时,干旱、泥沙掩埋复合胁迫导致处理组分株光合电子传递速率和热耗散能力显著低于对照组,光合作用能力显著降低,易受到夏季高光伤害。因此,三峡库区周年淹水导致狗牙根对泥沙掩埋以及干旱复合胁迫的耐受能力显著降低,在泥沙掩埋以及干旱复合胁迫下消落带狗牙根的生长恢复能力随粒径减小和埋深增加呈显著降低趋势,会导致库区消落带狗牙根种群衰退演替加快。  相似文献   

16.
沙埋对花棒种子萌发和幼苗生长的影响   总被引:1,自引:0,他引:1  
为探讨花棒(Hedysarum scopariium)种子萌发和幼苗生长对沙埋的响应,并为固沙造林、水土保持提供理论基础,研究了6种沙埋深度(0、1、2、3、4和5cm)对花棒种子萌发和幼苗生长的影响.结果表明,埋深对花棒幼苗出土率、首次出苗时间、单株叶片数、幼苗生长高度以及生物量的分配均有极显著影响(P<0.001).种子出苗率在2 cm沙埋下达到最高(95.6%),在5cm沙埋下最低(43.4%);幼苗最大高度(11.6cm)、绝对株高(13.9cm)和最大地上生物量(26.7mg)均出现在2cm的埋深,幼苗最小高度(3.3cm)、最小根长(4.3cm)和最小地上生物量(5.3mg)出现在5cm的埋深;生物量分配随沙埋深度增大而更多地分配给地下部分.2cm的沙埋是花棒种子萌发和幼苗生长的最佳深度.  相似文献   

17.
M. A. Maun  Susan Riach 《Oecologia》1981,49(1):137-142
Summary The spikelets of the grass Calamovilfa longifolia (Hook) Scribn. are one flowered and the dispersal unit is composed of a caryopsis (3.5 mm long and 0.9 mm wide) enclosed in lemma and palea. The highest germination of caryopses and emergence of seedlings occurred from 1–2 cm depths and seedling emergence decreased with increasing depth of burial. The maximum depth of sand from which a seedling can emerge is about 8 cm. Seedlings emerging from deep locations had first internodes which were more elongated than those of seedlings from more shallow plantings. Coleoptile lengths of seedlings from shallow or deeply buried caryopses were similar.  相似文献   

18.
Cheplick  G. P.  Grandstaff  K. 《Plant Ecology》1997,133(1):79-89
The effects of sand burial on seedling emergence, growth, and reproduction of the annual dune grass Triplasis purpurea (Walt.) Chapm. were examined. This species matures heteromorphic seeds on panicles enclosed by leaf sheaths along tiller nodes in a characteristic pattern: seeds at the lower nodes are heaviest, whilst those at the upper nodes are lightest. Field excavation of seedlings revealed that seedlings can emerge from seeds buried to 4 cm.In one experiment in an incubator, seeds collected from the upper and lower tiller nodes of glasshouse-grown parental plants were buried in sand at depths of 0, 3, and 6 cm. As expected, the effects of seed depth on seedling growth were due to delayed emergence for seedlings from buried seeds. However, seedlings from the larger seeds from the lower nodes of parental plants had significantly greater dry mass than those from the lighter seeds from upper nodes. Because lower node seeds are the most likely to become buried by sand in nature, the seed heteromorphism may be adaptive in the coastal environment.A second experiment involved the burial of seedlings to 0, 50, or 100% of their height. Although most seedlings did not survive complete burial (100% height), for partially buried seedlings (50% height) there was high survival and a marked stimulation of growth and eventual reproduction compared to unburied seedlings. This stimulation could be linked to increased root growth for seedlings that had been buried. The ability to respond positively to sand accumulation may represent an adaptation to the dynamic dune environment.  相似文献   

19.
Sand burial, persistent seed bank and soil water content (SWC) are three factors that potentially can affect regeneration in sand dune plant populations. To evaluate the effects of these three factors on population regeneration of Eremosparton songoricum, a rare and endangered legume, we investigated seed germination, seedling emergence and seedling survival in greenhouse and controlled field experiments in different sand dunes microsites. Freshly matured seeds are physically dormant, and the highest germination was only 9.3?±?5.8% at 25/10°C. Seed germination occurred at burial depths from 0 to 10 cm, but the maximum depth from which seedlings emerged was 6 cm; from 1 to 6 cm, the deeper the burial, the lower the percentage of seedling emergence. Only 36.2% of the total soil seed banks occurred at depths of 0?C6 cm. For artificially sown seeds at different dune microsites, mean seedling emergence percentage was 6.8%. Of 150 seedlings that emerged in the field investigation at the study site, only those germinating in flat sandy areas survived, and mean survival percentage was only 2.0%. Thus, the proportion of non-dormant seeds in soil seed banks that developed into seedlings and survived to the end of the growing season was only 0.2%. Minimum SWC for seed germination, seedling emergence and seedling survival was 2.0%. During monitoring of emergent seedlings in the field, low seedling recruitment was at least partly due to the rate of root extension (1.6?±?0.3 cm day?1) into the sandy soil, which was slower than that of the downward movement of plant-available moisture (2.8?±?0.6 cm day?1). Thus, population regeneration under natural conditions rarely occurred via sexual reproduction, owing to the limited water resources available for seedling establishment. Rational field seeding practices, including manually scarified or dry stored seeds before sowing, sowing the seeds at right time and suitable place, are suggested for ecological restoration of endangered E. songoricum populations.  相似文献   

20.
沙埋与水分对科尔沁沙地主要固沙植物出苗的影响   总被引:3,自引:0,他引:3  
蒿属半灌木乌丹蒿(Artemisia wudanica)、白沙蒿(A. sphaerocephala)、差不嘎蒿(A. halodendron)是科尔沁沙地的主要固沙植物。其中乌丹蒿和差不嘎蒿是科尔沁沙地的本土植物,白沙蒿为来自于库布齐沙漠、毛乌素沙地的飞播植物。设置了 5个沙埋深度(0.5、1.0、1.5、2.0和3.0 cm)和 4个水分梯度(86、171、257和 342 mL,分别模拟每月25、50、75和100 mm的降雨量),以探讨3种植物幼苗出土对沙埋和水分的响应。结果表明,沙埋与水分均显著影响着3种蒿属植物的幼苗出土(P < 0.001)。3种植物最适沙埋深度在0.5-1.5 cm范围内,萌发出土时适宜水量要高于当地种子萌发期的平均降水量(50 mm/月)。两种固沙先锋植物乌丹蒿和白沙蒿的种子出苗率均显著高于差不嘎蒿,乌丹蒿较白沙蒿也明显为高,尤其在水分缺乏时,表现出两种先锋植物种子出苗对干旱有更好的适应性。协方差分析表明,乌丹蒿幼苗死亡率显著高于白沙蒿和差不嘎蒿(P < 0.05),在达到75 mm/月降水量时,3种植物的出苗较好,但不能满足乌丹蒿幼苗生长对水分的需求,而实际种子萌发期的降水量平均只有50 mm/月。因而降水的缺乏导致乌丹蒿种群更新出现问题,加之飞播植物的竞争,使得近几年科尔沁沙地较多乌丹蒿种群出现衰退。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号