首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial activation of porcine pancreatic phospholipase A(2) (PLA(2)) during the hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes at different temperatures has been monitored by fluorescence changes of the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) lipid derivatives 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (C(12)-NBD-PC) and 12-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)]dodecanoic acid (C(12)-NBD-FA) inserted in the substrate vesicles. These long-chain monitors, in contrast to the previously used C(6)-NBD-PC, detect latency times of PLA(2) action, similar to those measured by the classic titrimetric, pH-stat method. Interestingly, hydrolysis of the host vesicles results in a decrease in fluorescence not only of C(12)-NBD-PC, a substrate analog, but also of product derivative C(12)-NBD-FA. Ultrafiltration experiments show that C(12)-NBD-FA does not migrate to the aqueous phase upon hydrolysis of the host liposomes. Besides, in a simulated hydrolysis experiment in which increasing proportions of palmitic acid and 1-palmitoyl-sn-glycero-3-phosphocholine were cosonicated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, C(12)-NBD-PC fluorescence was insensitive to products, whereas C(12)-NBD-FA did show a decreased emission intensity as in the actual hydrolysis experiments. The phenomenon is triggered above a critical concentration of products (10 mol%) suggesting that cosegregation of NBD-FA (either added as such or generated by hydrolysis of C(12)-NBD-PC) and products may be related to the decrease in fluorescence. Phase separation should create microdomains of increased C(12)-NBD-FA surface density and cause concentration quenching. In addition, and taking into account that the NBD group may be located near the interfacial region, it is possible that in segregating with products, the fluorescent moiety of C(12)-NBD-FA becomes exposed to microenvironments of higher surface polarity, which further decreases its quantum yield.  相似文献   

2.
The goal of the present study is to elucidate the effect of sphingomyelin on interfacial binding of Taiwan cobra phospholipase A2 (PLA2). Substitution of Asn-1 with Met caused a reduction in enzymatic activity and membrane-damaging activity of PLA2 toward phospholipid vesicles, while sphingomyelin exerted an inhibitory effect on the biological activities of native and mutated PLA2. Incorporation of sphingomyelin reduced membrane fluidity of phospholipid vesicles as evidenced by Laurdan fluorescence measurement. The results of self-quenching studies, binding of fluorescent probe, trinitrophenylation of Lys residues and fluorescence energy transfer between protein and lipid revealed that sphingomyelin altered differently membrane-bound mode of native and mutated PLA2. Moreover, it was found that PLA2 and N-terminally mutated PLA2 adopted different conformation and geometrical arrangement on binding with membrane bilayer. Nevertheless, the binding affinity of PLA2 and N-terminal mutant for phospholipid vesicles was not greatly affected by sphingomyelin. Together with the finding that mutation on N-terminus altered the gross conformation of PLA2, our data indicate that sphingomyelin modulates the mode of membrane binding of PLA2 at water/lipid interface, and suggest that the modulated effect of sphingomyelin depends on inherent structural elements of PLA2.  相似文献   

3.
A novel serum protein inhibiting specifically the enzymatic activity of the basic phospholipase A(2) (PLA(2)) from the venom of the Chinese mamushi snake (Agkistrodon blomhoffii siniticus) was purified from a nonvenomous Colubridae snake, Elaphe quadrivirgata. The purified inhibitor was a 150-kDa glycoprotein having a trimeric structure, composed of two homologous 50-kDa subunits. Their amino acid sequences, containing leucine-rich repeats, were typical of the beta-type PLA(2) inhibitor (PLIbeta), previously identified from the serum of A. blomhoffii siniticus. The inhibitor inhibited exclusively group II basic PLA(2)s and did not inhibit other kinds of PLA(2)s. This is the first paper reporting the existence of PLIbeta in a nonvenomous snake. The existence of PLIbeta in the nonvenomous snake reflects that PLIbetas are widely distributed over the snake species and participate commonly in regulating the physiological activities of the unidentified target PLA(2)s.  相似文献   

4.
Phospholipase A2 is an "interfacial" enzyme and its binding to negatively charged surfaces is an important step during catalysis. The Gln48 phospholipase A2 from the venom of Vipera ammodytes meridionalis plays the role of chaperone and directs a toxic His48 PLA2 onto its acceptor. In the venom the two phospholipases A2 exist as a postsynaptic neurotoxic complex, Vipoxin. The X-ray structure of Gln48 PLA2, complexed to sulphate ions, which mimic the negatively charged groups of anionic membranes, has been determined by the molecular replacement method and refined to 1.9A resolution. The protein forms a homodimer stabilized by ionic, hydrophobic, and hydrogen-bond interactions. The structure reveals two anion-binding sites per subunit. These sites are probably involved in interactions with the negatively charged membrane surface and, in this way, in the "targeting" of the toxic component to the receptors of the postsynaptic membranes. In the absence of the chaperone subunit the toxin changes the target of the physiological attack. A comparison of the homodimeric Gln48 PLA2 structure with that of the heterodimeric Vipoxin reveals differences in regions involved in the pharmacological activity of the toxin. This fact, except the active site histidine substitution, can explain the absence of toxicity in the Gln48 protein in comparison to the His48 phospholipase A2.  相似文献   

5.
Several snake species possess endogenous phospholipase A2 inhibitors (sbPLIs) in their blood plasma, the primary role of which is protection against an eventual presence of toxic phospholipase A2 (PLA2) from their venom glands in the circulation. These inhibitors have an oligomeric structure of, at least, three subunits and have been categorized into three classes (α, β and γ) based on their structural features. SbγPLIs have been further subdivided into two subclasses according to their hetero or homomeric nature, respectively. Despite the considerable number of sbγPLIs described, their structures and mechanisms of action are still not fully understood. In the present study, we focused on the native structure of CNF, a homomeric sbγPLI from Crotalus durissus terrificus, the South American rattlesnake. Based on the results of different biochemical and biophysical experiments, we concluded that, while the native inhibitor occurs as a mixture of oligomers, tetrameric arrangement appears to be the predominant quaternary structure. The inhibitory activity of CNF is most likely associated with this oligomeric conformation. In addition, we suggest that the CNF tetramer has a spherical shape and that tyrosinyl residues could play an important role in the oligomerization. The carbohydrate moiety, which is present in most sbγPLIs, is not essential for the inhibitory activity, oligomerization or complex formation of the CNF with the target PLA2. A minor component, comprising no more than 16% of the sample, was identified in the CNF preparations. The amino-terminal sequence of that component is similar to the B subunits of the heteromeric sbγPLIs; however, the role played by such molecule in the functionality of the CNF, if any, remains to be determined.  相似文献   

6.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

7.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

8.
The effects of morin and nordihydroguaiaretic acid (NDGA), two plant secondary metabolites, on porcine pancreatic phospholipase A2 (PLA2) were investigated by isothermal titration calorimetry (ITC) and in silico docking analyses. The binding energies obtained for NDGA and morin from the ITC studies are ? 6.36 and ? 5.91 kcal mol? 1, respectively. Similarly, the glide scores obtained for NDGA and morin towards PLA2 were ? 7.32 and ? 7.23 kcal mol? 1, respectively. Further the docked complexes were subjected to MD simulation in the presence of explicit water molecules to check the binding stability of the ligands in the active site of PLA2. The bound ligands make hydrogen bonds with the active site residues of the enzyme and coordinate bonds with catalytically important Ca2+ ion. The binding of ligands at the active site of PLA2 may also contribute to the reported anti-inflammatory properties of NDGA and morin.  相似文献   

9.
A protein, which neutralizes the enzymatic, toxic, and pharmacological activities of various basic and acidic phospholipases A(2) from the venoms of Bothrops moojeni, Bothrops pirajai, and Bothrops jararacussu, was isolated from B. moojeni snake plasma by affinity chromatography using immobilized myotoxins on Sepharose gel. Biochemical characterization of this myotoxin inhibitor protein (BmjMIP) showed it to be an oligomeric glycoprotein with a M(r) of 23,000-25,000 for the monomeric subunit. BmjMIP was stable in the pH range from 4.0 to 12.0, between 4 and 80 degrees C, even after deglycosylation. The role of the carbohydrate moiety was investigated and found not to affect the in vitro function of the inhibitor. The corresponding 500bp cDNA obtained by RT-PCR from the liver of the snake encodes a mature protein of 166 amino acid residues including a 19 amino acid signal peptide. The primary structure of BmjMIP showed a high similarity with other snake phospholipase A(2) inhibitors (PLIs) in which the carbohydrate recognition domain (CRD) and the glycosylation site (Asn103) are conserved. Circular dichroism spectroscopy indicated that no significant alterations in the secondary structure of either the BmjMIP or the target protein occur upon their interaction. BmjMIP has a wide range of inhibitory properties against basic and acidic PLA(2)s from Bothrops venoms (anti-enzymatic, anti-myotoxic, anti-edema inducing, anti-cytotoxic, anti-bactericidal, and anti-lethal). However, the inhibitor showed a reduced ability to neutralize the biological activities of crotoxin B (CB), the PLA(2) homologue associated with crotapotin in Crotalus durissus terrificus snake venom. Finally, the purified PLA(2) inhibitor was shown to protect in vivo against the toxic and pharmacological effects of a homologous PLA(2) enzyme, suggesting that PLIs or a corresponding derived peptide may prove useful in the treatment of snakebite victims or, more importantly, in the treatment of the many human diseases in which these enzymes have been implicated.  相似文献   

10.
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.  相似文献   

11.
This work describes in-depth NMR characterization of a unique low-barrier hydrogen bond (LBHB) between an active site residue from the enzyme and a bound inhibitor: the complex between secreted phospholipase A(2) (sPLA(2), from bee venom and bovine pancreas) and a transition-state analog inhibitor HK32. A downfield proton NMR resonance, at 17-18 ppm, was observed in the complex but not in the free enzyme. On the basis of site-specific mutagenesis and specific 15N-decoupling, this downfield resonance was assigned to the active site H48, which is part of the catalytic dyad D99-H48. These results led to a hypothesis that the downfield resonance represents the proton (H(epsilon 2) of H48) involved in the H-bonding between D99 and H48, in analogy with serine proteases. However, this was shown not to be the case by use of the bovine enzyme labeled with specific [15N(epsilon 2)]His. Instead, the downfield resonance arises from H(delta1) of H48, which forms a hydrogen bond with a non-bridging phosphonate oxygen of the inhibitor. Further studies showed that this proton displays a fractionation factor of 0.62(+/-0.06), and an exchange rate protection factor of >100 at 285 K and >40 at 298 K, which are characteristic of a LBHB. The pK(a) of the imidazole ring of H48 was shown to be shifted from 5.7 for the free enzyme to an apparent value of 9.0 in the presence of the inhibitor. These properties are very similar to those of the Asp em leader His LBHBs in serine proteases. Possible structural bases and functional consequences for the different locations of the LBHB between these two types of enzymes are discussed. The results also underscore the importance of using specific isotope labeling, rather than extrapolation of NMR results from other enzyme systems, to assign the downfield proton resonance to a specific hydrogen bond. Although our studies did not permit the strength of the LBHB to be accurately measured, the data do not provide support for an unusually strong hydrogen bond strength (i.e. >10 kcal/mol).  相似文献   

12.
Summary Phospholipase A2 (PLA2) produced slow dose dependent relaxation in intact and endothelium-deprived precontracted rabbit aortic strips. In endothelium-deprived preparations, relaxation induced by PLA2 is inhibited by hemoglobin, methylene blue and parabromophenacylbromide (PBPB), and is potentiated by superoxide dismutase (SOD). Indomethacin has no effect. Relaxation is accompanied by a rise in c-GMP. Phospholipase C causes a significant increase in tension, while Phospholipase D has no effects. In intact aortic strips PLA2 causes a biphasic response with no elevation in c-GMP. The results indicate several common features of the PLA2 released factor with endothelium-derived relaxing factor (EDRF). However PLA2 induced relaxation is not dependent on endothelial cells. Apparently in addition to nitric oxide which may be the endothelium-derived relaxing factor, a second smooth muscle relaxing factor exists which is initiated by PLA2 and is independent of endothelium. The production of the PLA2 produced relaxation is dependent on its specific hydrolytic activity. We call this relaxing factor the phospholipid-derived relaxing factor (PDRF).  相似文献   

13.
Natural inhibitors occupy an important place in the potential to neutralize the toxic effects caused by snake venom proteins and enzymes. It has been well recognized for several years that animal sera, some of the plant and marine extracts are the most potent in neutralizing snake venom phospholipase A(2) (svPLA(2)). The implication of this review to update the latest research work which has been accomplished with svPLA(2) inhibitors from various natural sources like animal, marine organisms presents a compilation of research in this field over the past decade and revisiting the previous research report including those found in plants. In addition to that the bioactive compounds/inhibitor molecules from diverse sources like aristolochic alkaloid, flavonoids and neoflavonoids from plants, hydrocarbones -2, 4 dimethyl hexane, 2 methylnonane, and 2, 6 dimethyl heptane obtained from traditional medicinal plants Tragia involucrata (Euphorbiaceae) member of natural products involved for the inhibitory potential of phospholipase A(2) (PLA(2)) enzymes in vitro and also decrease both oedema induced by snake venom as well as human synovial fluid PLA(2). Besides marine natural products that inhibit PLA(2) are manoalide and its derivatives such as scalaradial and related compounds, pseudopterosins and vidalols, tetracylne from synthetic chemicals etc. There is an overview of the role of PLA(2) in inflammation that provides a rationale for seeking inhibitors of PLA(2) as anti-inflammatory agents. However, more studies should be considered to evaluate antivenom efficiency of sera and other agents against a variety of snake venoms found in various parts of the world. The implications of these new groups of svPLA(2) toxin inhibitors in the context of our current understanding of snake biology as well as in the development of new novel antivenoms therapeutics agents in the efficient treatment of snake envenomations are discussed.  相似文献   

14.
15.
Human nonpancreatic secreted phospholipase A2 (hnps PLA2) is considered to be an important drug target for antiinflammation therapy. We have established a new fluorescence assay by using 1-anilinonaphthalene-8-sulfonate (ANS) as an interfacial probe for hydrophobic environment detection. The fitted apparent k(cat)/K(m) of hnps PLA2 is 0.0181 +/- 0.0005 RFU/microMs. Tests on known synthesized inhibitor gave IC50 values similar to those from isotope-labeled assay. Because ANS is a commonly used probe for hydrophobic environment detection that needs no modification in the current assay, this strategy may be widely applicable for interfacial catalytic reactions.  相似文献   

16.
Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions.  相似文献   

17.
Understanding the docking mechanism of the common substrate, prostaglandin H(2) (PGH(2)), into the active sites of different cyclooxygenase(COX)-downstream synthases is a key step toward uncovering the molecular basis of the isomerization of PGH(2) to different prostanoids. A high-resolution NMR spectroscopy was used to determine the conformational changes and solution 3D structure of U44069, a PGH(2) analogue, bound to one of the COX-downstream synthases-an engineered thromboxane A(2) synthase (TXAS). The dynamic binding was clearly observed by (1)D NMR titration. The detailed conformational change and 3D structure of U44069 bound to the TXAS were demonstrated by 2D (1)H NMR experiments using transferred NOEs. Through the assignments for the 2D (1)H NMR spectra, TOCSY, DQF-COSY, NOESY, and the structural calculations based on the NOE constraints, they demonstrated that the widely open conformation with a triangle shape of the free U44069 changed to a compact structure with an oval shape when bound to the TXAS. The putative substrate-binding pocket of the TXAS model fits the conformation of the TXAS-bound U44069 appropriately, but could not fit the free form of U44069. It was the first to provide structural information for the dynamic docking of the PGH(2) mimic of the TXAS in solution, and to imply that PGH(2) undergoes conformational changes when bound to different COX-downstream synthases, which may play important roles in the isomerization of PGH(2) to different prostanoids. The NMR technique can be used as a powerful tool to determine the conformations of PGH(2) bound to other COX-downstream synthases.  相似文献   

18.
The screening of small synthetic compound libraries is a useful means of identifying molecules that modulate various cellular responses. We screened more than 10,000 different small compounds and identified three synthetic compounds that stimulate arachidonic acid (AA) release in a combinational manner in neutrophil-like differentiated HL60 cells. These three compounds were designated as AARIC-1, -2, and -3, representing AA release inducing compounds-1, -2, and -3. Although AA release was not induced by any single one of these compounds, it was dramatically stimulated by the three compounds in combination. Moreover, the effect of combined treatment by these compounds on AA release was completely abolished by MAFP and AACOCF(3), specific cytosolic phospholipase A(2) inhibitors. Furthermore, we found that AARIC-3 stimulates cytosolic calcium influx, while AARIC-1 induces ERK activation. Taken together, we demonstrate a useful approach to the study of complicated and nonlinear intracellular signaling networks using small synthetic compounds in combination.  相似文献   

19.
Platelets revert hypotonic-induced swelling by the process of regulatory volume decrease (RVD). We have recently shown that this process is under the control of endogenous hepoxilin A3. In this work, we investigated the mechanical-biochemical transduction that leads to hepoxilin A3 formation. We demonstrate that this process is mediated by pertussis-toxin-sensitive G protein, which activates Ca2+-insensitive phospholipase A2, and the sequential release of arachidonic acid. This conclusion is supported by the following observations: (i) RVD response is blocked selectively by the phospholipase A2 inhibitors manoalide and bromophenacyl-bromide (0.2 and 5 m, respectively) but not by phospholipase C inhibitors. The addition of arachidonic acid overcame this inhibition; (ii) extracellular Ca2+ depletion by EGTA (up to 10 mm) does not affect RVD; (iii) intracellular Ca2+ depletion by BAPTAAM (100 m) inhibits RVD but not hepoxilin A3 formation, as tested by the RVD reconstitution assay; (iv) RVD is inhibited by the G-protein inhibitors, GDP S (1 m) and pertussis toxin (1 ng/ml). This inhibition is overcome by addition of arachidonic acid or hypotonic cell-free eluate that contains hepoxilin A3; (v) NaF, 1 mm, induces hepoxilin A3 formation, tested by the RVD reconstitution assay; and (vii) GDP S inhibits hepoxilin A3 formation associated with flow. Therefore, it seems that G proteins are involved in the initial step of the mechanical-biochemical transduction leading to hepoxilin A3 formation in human platelets.DeceasedThis work is dedicated to the memory of Prof. A.A. Livne. It was carried out at the Amelia (Mimi) Rose Laboratory for Cellular Signal Transduction at the Department of Life Sciences, Ben-Gurion University of the Negev. We thank A. Dannon for helpful discussion.  相似文献   

20.
The association of cytosolic phospholipase A2-α (cPLA2α) with intracellular membranes is central to the generation of free arachidonic acid and thromboxane A2 in activated platelets. Despite this, the site and nature of this membrane association has not been fully characterised upon platelet activation. High resolution imaging showed that cPLA2α was distributed in a partly structured manner throughout the resting platelet. Upon glass activation or thrombin stimulation, cPLA2α relocated to a peripheral region corresponding to the platelet plasma membrane. Upon thrombin stimulation of platelets a major pool of cPLA2α was associated with the plasma membrane in an EGTA-resistant manner. EGTA-resistant membrane binding was abolished upon de-polymerisation of actin filaments by DNase I and furthermore, cPLA2α co-immunoprecipitated with actin upon thrombin stimulation of platelets. Immunofluorescence microscopy studies revealed that, upon platelet activation, cPLA2α and actin co-localised at the plasma membrane. Thus we have identified a novel mechanism for the interaction of cPLA2α with its membrane substrate via interaction with actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号