首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients’ skin varied from 1.2 to 4.1 Bq/cm2 in the bathtub, and from 1.1 to 2.6 Bq/cm2 in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.  相似文献   

2.
Summary Using isolated cuticular membranes from ten woody and herbaceous plant species, permeance and diffusion coefficients for water were measured, and partition coefficients were calculated. The cuticular membranes of fruit had much higher permeance and diffusion coefficients than leaf cuticular membranes from either trees or herbs. Both diffusion and partition coefficients increased with increasing membrane thickness. Thin cuticles, therefore, tend to be better and more efficient water barriers than thick cuticles. We compared the diffusion coefficients and the water content of cuticles as calculated from transport measurements with those obtained from water vapor sorption. There is good to fair agreement for cuticular membranes with a low water content, but large discrepancies appear for polymer matrix membranes with high permeance. This is probably due to the fact that diffusion coefficients obtained from transport measurements on membranes with high permeance and water content are underestimated. Water permeabilities of polyethylene and polypropylene membranes are similar to those of leaf cuticular membranes. However, leaf cuticles have much lower diffusion coefficients and a much greater water content than these synthetic polymers. This suggests that cuticles are primarily mobility barriers as far as water transport is concerned.  相似文献   

3.
A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant’s epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of 214Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.  相似文献   

4.
Quenching of pyrene fluorescence by oxygen was used to determine oxygen diffusion coefficients in phospholipid dispersions and erythrocyte plasma membranes. The fluorescence intensity and lifetime of pyrene in both artificial and natural membranes decreases about 80% in the presence of 1 atm O2, while the fluorescence excitation and emission spectra and the absorption spectrum are unaltered. Assuming the oxygen partition coefficient between membrane and aqueous phase to be 4.4, the diffusion coefficients for oxygen at 37 degrees C are 1.51 X 10(-5) cm2/s in dimyristoyl lecithin vesicles, 9.32 X 10(-6) cm2/s in dipalmitoyl lecithin vesicles, and 7.27 X 10(-6) cm2/s in erythrocyte plasma membranes. The heats of activation for oxygen diffusion are low (less than 3 kcal/degree-mol). A dramatic increase in the diffusion constant occurs at the phase transition of dimyristoyl and dipalmitoyl lecithin, which may result from an increase in either the oxygen diffusion coefficient, partition coefficient, or both. The significance of the change in oxygen diffusion below and above the phase transition for biological membranes is discussed.  相似文献   

5.
Previous work has shown that bovine prothrombin fragment 1 binds to substrate-supported planar membranes composed of phosphatidylcholine (PC) and phosphatidylserine (PS) in a Ca(2+)-specific manner. The apparent equilibrium dissociation constant is 1-15 microM, and the average membrane residency time is approximately 0.25 s-1. In the present work, fluorescence pattern photobleaching recovery with evanescent interference patterns (TIR-FPPR) has been used to measure the translational diffusion coefficients of the weakly bound fragment 1. The results show that the translational diffusion coefficients on fluid-like PS/PC planar membranes are on the order of 10(-9) cm2/s and are reduced when the fragment 1 surface density is increased. Control measurements were carried out for fragment 1 on solid-like PS/PC planar membranes. The dissociation kinetics were similar to those on fluid-like membranes, but protein translational mobility was not detected. TIR-FPPR was also used to measure the diffusion coefficient of the fluorescent lipid NBD-PC in fluid-like PS/PC planar membranes. In these measurements, the diffusion coefficient was approximately 10(-8) cm2/s, which is consistent with that measured by conventional fluorescence pattern photobleaching recovery. This work represents the first measurement of a translational diffusion coefficient for a protein weakly bound to a membrane surface.  相似文献   

6.
Chlorinated hydrocarbon insecticides quench the fluorescence of N-alkyl derivatives of carbazole. We used phospholipids with covalently attached carbazole as probes for the interactions of chlorinated hydrocarbon insecticides with lipid bilayers, the object being to understand better the toxicities of chlorinated hydrocarbons. Fluorescence quenching measurements revealed the lipid-water partition coefficients of the chlorinated hydrocarbons, their diffusion coefficients in the membranes, and the binding capacities of the membranes for the chlorinated hydrocarbons. Active insecticides were compared with inactive analogues to test whether activities correlated with chlorinated hydrocarbon-membrane interactions. Thus DDT and methoxychlor were compared with inactive DDE, and insecticidal γ-lindane was compared with three less active stereoisomers. The partition coefficients, diffusion coefficients and membrane saturation capacities did not correlate with insecticidal potency. The partition coefficients of these chlorinated hydrocarbons were larger in bilayers containing unsaturated fatty acyl chains as compared to bilayers containing saturated fatty acyl chains. Interestingly, neural membranes are known to contain a large percentage of unsaturated lipids. Our results indicate that the activities of chlorinated hydrocarbons are not a result of specific interactions of these compounds with the lipids of membranes. However, the neurotoxicity of chlorinated hydrocarbons may be amplified by selective partitioning in the unsaturated neural membranes.  相似文献   

7.
Membranes composed of bipolar tetraether lipids have been studied by a series of 25-ns molecular dynamics simulations to understand the microscopic structure and dynamics as well as membrane area elasticity. By comparing macrocyclic and acyclic tetraether and diether archaeal lipids, the effect of tail linkage of the two phytanyl-chained lipids on the membrane properties is elucidated. Tetraether lipids show smaller molecular area and lateral mobility. For the latter, calculated diffusion coefficients are indeed one order-of-magnitude smaller than that of the diether lipid. These two tetraether membranes are alike in many physical properties except for membrane area elasticity. The macrocyclic tetraether membrane shows a higher elastic area expansion modulus than its acyclic counterpart by a factor of three. Free energy profiles of a water molecule crossing the membranes show no major difference in barrier height; however, a significant difference is observed near the membrane center due to the lack of the slip-plane in tetraether membranes.  相似文献   

8.
The two parameters usually invoked when discussing transport across membranes are the "diffusion permeability coefficient" and the "hydrodynamic permeability coefficient." In this study the magnitude of these two coefficients is established experimentally for collodion membranes of differing porosities. The hydrodynamic permeability is predominant while convergence of the two permeabilities tends to obtain as the membranes become less coarse. The flux data obtained are used to calculate "average pore diameter" and the meaningfulness of these calculations is interpreted. The relationship between the two coefficients and transport across membranes as treated by the system of irreversible thermodynamics is discussed.  相似文献   

9.
Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.  相似文献   

10.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

11.
Bacterial cellulose obtained through fermentation by the Acetobacter xylinum is of superior functional quality in comparison to plant cellulose. Various alkali treatment methods were used to process bio-chemically complex pellicle into a clean cellulose membrane/sheet. The effect of potassium hydroxide, sodium carbonate and potassium carbonate was found to be milder on the final cellulose product in contrast to the widely used sodium hydroxide treatment. These novel treatment methods also caused improvement in the tensile strength of the membranes in comparison to sodium hydroxide. The overall quality of the 0.1 M sodium carbonate- and potassium carbonate-treated cellulose was superior, as the membranes displayed maximum tensile strength and elongation next to the native membrane. The low tensile strength of sodium hydroxide-treated membrane is attributed to its higher swelling characteristics in alkali. Further, the low swelling property of sodium carbonate- and potassium carbonate-treated membranes resulted in their high oxygen transmission rates (low oxygen barrier). Hunter lab colour parameters were determined to assess the effect of different alkali treatments on the colour characteristics of the membranes. Further, based on the high mechanical strength and comparatively low oxygen transmission rates, the processed cellulose membranes may find application as a bio- packaging material for controlled atmosphere packaging, where hydrophilic membranes with high oxygen barrier and water vapour permeation are desirable.  相似文献   

12.
Tracer diffusion coefficients of integral membrane proteins (IMPs) in intact plasma membranes are often much lower than those found in blebbed, organelle, and reconstituted membranes. We calculate the contribution of hydrodynamic interactions to the tracer, gradient, and rotational diffusion of IMPs in plasma membranes. Because of the presence of immobile IMPs, Brinkman's equation governs the hydrodynamics in plasma membranes. Solutions of Brinkman's equation enable the calculation of short-time diffusion coefficients of IMPs. There is a large reduction in particle mobilities when a fraction of them is immobile, and as the fraction increases, the mobilities of the mobile particles continue to decrease. Combination of the hydrodynamic mobilities with Monte Carlo simulation results, which incorporate excluded area effects, enable the calculation of long-time diffusion coefficients. We use our calculations to analyze results for tracer diffusivities in several different systems. In erythrocytes, we find that the hydrodynamic theory, when combined with excluded area effects, closes the gap between existing theory and experiment for the mobility of band 3, with the remaining discrepancy likely due to direct obstruction of band 3 lateral mobility by the spectrin network. In lymphocytes, the combined hydrodynamic-excluded area theory provides a plausible explanation for the reduced mobility of sIg molecules induced by binding concanavalin A-coated platelets. However, the theory does not explain all reported cases of "anchorage modulation" in all cell types in which receptor mobilities are reduced after binding by concanavalin A-coated platelets. The hydrodynamic theory provides an explanation of why protein lateral mobilities are restricted in plasma membranes and why, in many systems, deletion of the cytoplasmic tail of a receptor has little effect on diffusion rates. However, much more data are needed to test the theory definitively. We also predict that gradient and tracer diffusivities are the same to leading order. Finally, we have calculated rotational diffusion coefficients in plasma membranes. They decrease less rapidly than translational diffusion coefficients with increasing protein immobilization, and the results agree qualitatively with the limited experimental data available.  相似文献   

13.
The surface diffusion coefficient of cholesterol in cholesterol monolayers has been measured as a function of cholesterol surface concentration. Two different radiochemical methods, one integral and the other differential, were developed which gave comparable results. In the integral method two cholesterol monolayers, one of which is radioactive, are isolated on inert hydrophilic supports and then brought into contact. After some time the supports are separated and the radioactivity of the supports is measured. The differential method is an autoradiographic experiment. Two cholesterol monolayers, one of which is radioactive, are separated by means of a thin barrier. Upon removal of the barrier and at later times, an autoradiographic plate is brought to within a fraction of a mm from the aqueous surface and exposed. The plates are developed and analysed. The data show that the cholesterol surface diffusion coefficient in the dilute monolayers is approximately 10(-6)cm2/s and is nearly independent of surface concentration up to a concentration corresponding to an area of 40 A2/molecule. As the monolayer becomes compressed beyond this surface concentration, the diffusion coefficient decreases ubruptly with the deeply decreasing surface tension to about 10(-7) cm2/s, when a fully condensed surface layer of 38 A2/molecule is reached. This diffusion coefficient is of the same order of magnitude as the diffusion coefficients measured in lipid bilayers and in membranes.  相似文献   

14.
The Stern-Volmer theory, in which the quantum yield ratio (Io/I) depends linearly on the quencher concentration, will typically be inapplicable to fluorescence quenching in membranes. Numerical analysis shows that diffusion-controlled quenching results in a nonlinear concentration dependence for diffusion coefficients less than or of the order of 10(-6) cm2 s-1 and probe fluorescence lifetimes in the region of 10-100 ns. Lateral diffusion coefficients in membranes are typically overestimated an order of magnitude or more by the Stern-Volmer theory. An alternative empirical method is presented, which represents nonlinear concentration curves by a single parameter linear approximation determined by a least-squares analysis. The fitting parameter, P, depends on the interaction distance, the membrane thickness, the maximum extent of quenching and, in the case of biexponential probe fluorescence decay, the fluorescence kinetic parameters. P is presented in tabular form for a useful range of these parameters. The method is used to estimate diffusion coefficients for plastoquinone and plastoquinol from pyrene fluorescence quenching in soya bean phosphatidylcholine liposomes. It is found that the diffusion coefficients are nearly equal and in the region of 1.3-3.5 X 10(-7) cm2 s-1 for interaction radii of 1.5-0.5 nm, respectively.  相似文献   

15.
The contributions of different radon sources into total indoor radon level can differ in some times depending on geographical and climatic features of the locality, building characteristics, lifestyle and habits of the population. The revealing of most significant radon sources for examined locality and the assessment of their relative contributions will allow planning expected radon levels during building design stage. The analysis of the factors influencing indoor radon levels and the computation of radon enter to dwellings from different sources were carried out in Tomsk. About 200 dwellings were investigated on the radon presence by solid state track detectors. The results of the comparative analysis of the theoretical and experimental sets are discussed in this paper.  相似文献   

16.
Summary The permeability of the rabbit gallbladder epithelium to nonelectrolytes was determinted by radioactive tracer techniques and by a rapid osmotic procedure. As expected from empirical and theoretical considerations, there was a good agreement between the selectivity sequences obtained by the two methods for the sixteen compounds used in this study. Although the permeability coefficients are directly related to their bulk-phase partition coefficients, the gallbladder behaves as if the membranes controlling selectivatity are more hydrophilic than isobutanol. The relation between permeability coefficients and molecular weight also show that these membranes are less viscous than other single cell membranes. Small polar solutes exhibit lower apparent activiation energies for permeation than larger solutes, and this is taken as support for the view that small polar molecules permeate across this tissue via a polar pathway. Inutin and sucrose permeability coefficients are in the ratio of their free-solution diffusion coefficients, and the apparent surcose activation energy is indistinguishable from that reported for diffusion in aqueous solution. These latter observations may be explained by the presence of a few large pores in the epithelium.  相似文献   

17.
Interaction of electric fields with biological systems has begun to receive considerable attention for applications that include field-assisted drug delivery, medical interventions, and genetic engineering. External fields induce the strongest effects at membranes with electroporation being a common feature. Membrane transport in this context of poration is often based on continuum approaches utilizing macroscopic parameters such as the permittivity, diffusion coefficients, and mobilities. In such modeling, field dependences, local inhomogeneities, and microscopic details are usually ignored. Here, a molecular dynamics (MD) scheme is used for a more rigorous and physically realistic evaluation of such parameters for potential application to electroporative transport model development. A suitable membrane structure containing a nanopore derived from MD analysis is used as the initial geometric configuration. Both static and frequency dependent diffusion coefficients have been evaluated. Permittivities are also calculated and shown to be dramatically non-uniform in the vicinity of membranes under high external fields. A positive feedback mechanism leading to enhanced membrane fields is discussed.  相似文献   

18.
Published and new data on steady-state exchange of tracers and oxygen are characterized by marked species differences. When the placenta is treated as an ideal diffusion cell of unknown vessel geometry and permeability, the exchange characteristics of oxygen can be used to prove that the exchange of tracers such as acetylene, nitrous oxide, tritiated water and antipyrine is entirely flow limited. The recorded patterns of transfer of flow-limited tracers reveal that some placentas are as effective as counter-current exchangers whereas others mimic the behavior of the less effective types of exchangers. These species differences in apparent geometry are unrelated to the histologic nature of the barrier. The patterns of flow-limited transfer are so similar to those of oxygen transfer that the diffusion resistance to oxygen must be small. The exchange of diffusion-limited (hydrophilic) tracers mimics exchange across capillary membranes in some species and exchange across cell membranes in others. These species differences in diffusion-limited transfer are clearly related to the histologic nature of the barrier and are independent of vessel geometry.  相似文献   

19.
A model connective-tissue system was developed that is amenable to the determination of permeability coefficients of diffusing solutes. The system involves the culture of 13-day chick-embryo chondrocytes on a Millipore filter (HA:0.45 micron pore size) to form what is, in effect, a confluent, extremely thin cartilage slice of uniform thickness. These cultured chondrocyte membranes were used to measure the steady-state flux of radioactively labelled low-molecular-weight solutes and micro-ions. Similarly, the permeability coefficients of either radioactively labelled or enzymically active proteins across the membranes were determined. The membrane was found to have no marked effects on the diffusional behaviour of low-molecular-weight non-electrolytes (water, proline, ribose, glucose, sorbitol, raffinose). For micro-ions (Na+, SO42-, Cl-, glutamate, glucuronate,), the diffusive behaviour was found to be markedly affected by the ionic strength of the solvent used in a manner which was consistent with a Donnan distribution resulting from the immobilized proteoglycans. Globular proteins permeated the membrane at rates which decreased as the molecular size of the diffusing solute increased. The apparent diffusion rates of fibrinogen and of collagen through the membranes were greater than would be expected on the basis of their diffusion coefficients in free solution. Reasons for this behaviour are discussed.  相似文献   

20.
Rotational and wobbling diffusion coefficients for spherical and long-chain molecules in membranes are calculated using a simple hydrodynamic model. Estimates of the contributions to the diffusion coefficients arising from hydrodynamic interactions between molecules and membrane interfaces are obtained and found to be small. For molecules containing polar head groups, we show that the presence of a membrane interface can produce a significant reduction in the wobbling diffusion coefficient over what would be obtained in an isotropic fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号