首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.  相似文献   

2.
The degree of stomatal sensitivity to CO2 was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO2 sensitivity), nor in plants transferred from the cold to the warm chamber (low abscisic acid, high CO2 sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.  相似文献   

3.
A cDNA and genomic DNA encoding an abscisic acid responsive gene (ASR) homologue (Asr1) was isolated from an inodorus melon, Cucumis melo var. kuwata, cDNA and genomic library. The Asr1 gene showed the strongest fruit-specific expression and differential expression profiles during fruit development, which were expressed from a low copy gene. The promoter region of the Asr1 gene contained several putative functional cis-elements, which may be involved in the response to plant hormones and environmental stresses. These results suggest that Asr1 may play an important role in the regulation of melon fruit ripening.  相似文献   

4.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems.  相似文献   

5.
6.
7.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems. Received: 24 March 1997 / Accepted: 26 November 1997  相似文献   

8.
cDNA macroarray has become a useful tool to analyze expression profiles and compare the similarities and differences of various expression patterns. We have prepared a cDNA macroarray containing 190 maize expressed sequence tags (ESTs) specifically induced by water stress to analyze the expression profiles of maize seedlings under abscisic acid (ABA) treatment, high-salinity and cold stress conditions. The results indicated that 48 ESTs in leaves and 111 ESTs in roots were significantly up-regulated by ABA treatment, 36 ESTs in leaves and 41 ESTs in roots by high-salinity stress, 14 ESTs in leaves and 18 ESTs in roots by cold induction, whereas 22 ESTs were induced under all 3 stresses. Results from the hierarchical cluster analysis suggest that the leaves and roots of maize seedlings had different expression profiles after these stresses. The overlap analysis of different stress-induced ESTs indicated that there is more crosstalk between water stress and ABA and high-salinity stress than between water stress and cold stress. It will be helpful to study the precise function of the corresponding overlapping-induced genes for understanding the relationship and crosstalk between different stress signal pathways.  相似文献   

9.
Asr1, Asr2 andAsr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal thatAsr1, Asr2 andAsr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid crossL. esculentum × L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of theAsr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level.  相似文献   

10.
11.
为了研究苯丙氨酸解氨酶基因与大蕉(Musa ABB cv. Dongguandajiao)抗枯萎病的关系,利用 RT-PCR 和 RACE技术克隆了大蕉苯丙氨酸解氨酶基因全长 cDNA。此 cDNA 长 1 300 bp,包含一个长为 1 191 bp,编码 397 个氨基酸的完整开放阅读框(ORF),推导的氨基酸序列与水稻 PAL 基因氨基酸序列同源性达 89%,将此基因命名为 M-PAL。Southern杂交结果表明大蕉中存在一个包含 4-5 个 PAL基因的基因家族,将此基因克隆到大肠杆菌表达载体 pET32(a )中,表达的蛋白质分子量大小与推导的相一致,并且表达的蛋白质表现出 PAL 酶活性。对接种香蕉枯萎病菌 4 号生理小种(Fusarium oxysporumf. sp. cubense (FOC) race 4 )后大蕉叶片中 M-PAL基因的转录谱进行研究表明,在接种枯萎病菌后,M-PAL基因在叶片中的转录水平提高,因此推测 M-PAL基因的表达可能与香蕉枯萎病抗性相关。  相似文献   

12.
Asr1, Asr2 andAsr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal thatAsr1, Asr2 andAsr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid crossL. esculentum × L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of theAsr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level.  相似文献   

13.
mRNA encoding alcohol dehydrogenase (ADH) increases in etiolated seedlings and leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature. The analysis of this response after water stress and abscisic acid (ABA) treatments in Arabidopsis wild type and ABA-deficient and -insensitive mutants indicates that cold accumulation of ADH mRNA could be induced by both anaerobic metabolism and increase of ABA concentration resulting from low temperature exposure. By using one Arabidopsis ADH null mutant, we show that ADH activity is not required for successful development of freezing tolerance in this species.  相似文献   

14.
Yao  Chentao  Zhang  Fengwen  Sun  Xiao  Shang  Dianlong  He  Falin  Li  Xiangdong  Zhang  Jiwang  Jiang  Xingyin 《Journal of Plant Growth Regulation》2019,38(4):1300-1313

The objective of this study was to evaluate the ability of the phytohormone S-abscisic acid (S-ABA) to protect maize seedlings grown under drought stress and to measure their increased drought tolerance. The maize hybrids ‘Zhengdan 958’ (ZD958; drought tolerant) and ‘Xundan 20’ (XD20; drought sensitive) were treated with nutrient solutions of different concentrations (1, 2, 4, 8, and 10 mg/kg) of S-ABA under polyethylene glycol (PEG, 15% w/v, MW 6000) simulated drought stress. Optimal concentrations of S-ABA were designed to be sprayed onto the leaves of seedlings, and their effect on endogenous ABA, malondialdehyde (MDA), osmotic substances, antioxidant enzyme activities, and Asr1 gene expression in seedlings were studied. Results indicated that, under drought stress, S-ABA treatment significantly improved maize seed germination rate (GR), germination energy (GE), and seedling biomass (p < 0.05). After spraying 4 mg/kg S-ABA onto leaves, the endogenous hormone ABA, osmotic substances, antioxidant enzyme activities, and expressive quantity of the Asr1 gene were extended and MDA content dropped significantly (p < 0.05). Moreover, ZD 958 endogenous ABA content, osmotic substances content, antioxidant enzyme activity and Asr1 gene expressive quantity were higher than that of XD 20 (p < 0.05). In conclusion, S-ABA treatment increased the content of endogenous ABA, induced an increase in antioxidant enzyme activity and Asr1 gene expression level, reduced the oxidative damage caused by drought to maize leaves, and improved the adaptability of maize seedlings to withstand drought stress. The promoting effect of S-ABA on the drought-tolerant variety ZD 958 was more obvious (p < 0.05). These results serve as a reference for the use of S-ABA in mitigating drought stress in maize.

  相似文献   

15.
The two cultivars of Digitaria eriantha: cv. Sudafricana (a cold-sensitive cultivar) and cv. Mejorada INTA (a cold-resistant cultivar) were exposed to low temperature and compared in terms of the involvement of abscisic acid (ABA) and catabolites, jasmonates, and antioxidant defense in cold tolerance. Cold stress caused a greater ABA increase in cv. Mejorada INTA than in cv. Sudafricana. In both cultivars abscisic acid glucose ester and dihydrophaseic acid were the most abundant catabolites. Cold treatment decreased JA in leaves of both cultivars. In cv. Sudafricana, 12-hydroxyjasmonate (12-OH-JA) decreased and 12-oxo-phytodienoic acid increased. In regard to antioxidant defense, both cultivars increased the non-protein thiols in response to cold stress. However, reduced glutathione (GSH) level was higher in leaves of cv. Mejorada INTA than cv. Sudafricana. Cold-treated leaves of cv. Sudafricana increased thiobarbituric acid-reactive substances (TBARS), but cv. Mejorada INTA leaves showed no such increase. Superoxide dismutase activity decreased and ascorbate peroxidase activity increased in cold-treated leaves of cv. Sudafricana. No significant change of these enzymes was observed for cv. Mejorada INTA. The cold tolerance of cv. Mejorada INTA could be related to JA, 12-OH-JA and GSH high basal contents, ABA increase, and TBARS stability after cold treatment.  相似文献   

16.
ABSTRACT: BACKGROUND: The abscisic acid (ABA) pathway plays an important role in the plants' reaction to drought stress and ABA-stress response (Asr) genes are important in controlling this process. In this sense, we accessed nucleotide diversity at two candidate genes for drought tolerance (Asr1 and Asr2), involved in an ABA signaling pathway, in the reference collection of cultivated common bean (Phaseolus vulgaris L.) and a core collection of wild common bean accessions. RESULTS: Our wild population samples covered a range of mesic (semi-arid) to very dry (desert) habitats, while our cultivated samples presented a wide spectrum of drought tolerance. Both genes showed very different patterns of nucleotide variation. Asr1 exhibited very low nucleotide diversity relative to the neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Asr2 exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection. These patterns were more notable in wild beans than in cultivated common beans indicting that natural selection has played a role over long time periods compared to farmer selection since domestication. CONCLUSIONS: Together these results suggested the importance of Asr1 in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. Furthermore, one of our major successes was to find that wild common bean is a reservoir of genetic variation and selection signatures at Asr genes, which may be useful for breeding drought tolerance in cultivated common bean.  相似文献   

17.
Fruit-set of unpollinated ovaries of Pisum sativum L.   总被引:1,自引:0,他引:1  
The influence of removing the apical shoot and different leaves above and below the flower on the fruit-set of unpollinated pea ovaries (Pisum sativum L. cv. Alaska) has been studied. Unpollinated ovaries were induced to set and develop either by topping or by removing certain developing leaves of the shoot. Topping had a maximum effect when carried out before or on the day of anthesis, and up to four consecutive ovaries were induced to set in the same plant. The inhibition of fruit-set was due to the developing leaves and not to the apex. The third leaf above the first flower, which had a simultaneous development to the ovary, had the stronger inhibitory effect on parthenocarpic fruit-set. The application of different plant-growth regulators (indoleacetic acid, naphthylacetic acid, 2,4-dichlorophenoxyacetic acid, gibberellic acid, benzyladenine and abscisic acid) did not mimic the negative effect of the shoot.Abbreviations CCC (2-chloroethyl)trimethylammonium chloride - MH maleic hydrazide - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - 6-BAP benzyladenine - ABA abscisic acid  相似文献   

18.
Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period.  相似文献   

19.
Leaf senescence is induced or accelerated when leaves are detached. However, the senescence process and expression pattern of senescence-associated genes (SAGs) when leaves are detached are not clearly understood. To detect senescence-associated physiological changes and SAG expression, wheat (Triticum aestivum L.) leaves were detached and treated with light, darkness, low temperature (4 C), jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA). The leaf phenotypes, chlorophyll content, delayed fluorescence (DF), and expression levels of two SAGs, namely, TaSAG3 and TaSAG5, were analyzed. Under these different treatments, the detached leaves turned yellow with different patterns and varying chlorophyll content. DF significantly decreased after the dark, ABA, JA and SA treatments. TaSAG3 and TaSAG5, which are expressed in natural senescent leaves, showed different expression patterns under various treatments. However, both TaSAG3 and TaSAG5 were upregulated after leaf detachment. Our results revealed senescence-associated physiological changes and molecular differences in leaves, which induced leaf senescence during different stress treatments.  相似文献   

20.
The effects of abscisic acid and isobutyric acid on levels ofproline in detached rice leaves were compared. The lowest concentrationof abscisic acid that induces accumulation of proline in detachedrice leaves was much lower than that of isobutyric acid. Theaccumulation of porline induced by isobutyric acid was associatedwith acidification of the cell sap, whereas abscisic acid increasedlevels of proline without decreasing the pH of the cell sap.Potassium chloride enhanced the accumulation of proline thatwas induced by abscisic acid, but it did not stimulate thatinduced by isobutyric acid. Of particular interest is the findingthat detached rice leaves treated with fusicoccin showed anincrease in levels of proline and a decrease in the pH of thecell sap. A synergistic increase in levels of proline was observedwhen fusicoccin and abscisic acid applied simultaneously. However,fusicoccin had no effect on the induction of the accumulationof pro-line by isobutyric acid. Benzyladenine inhibited theinduction by abscisic acid of the accumulation of proline, butit did not inhibit the induction by isobutyric acid. It is concludedthat the mode of action of abscisic acid in inducing the accumulationof proline differs from that of isobutyric acid. Our resultsalso indicate that factors other than acidification of the cellsap are involved in regulation of the accumulation of proline. (Received September 25, 1990; Accepted December 20, 1990)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号