首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic model for nitrogen-limited wine fermentations.   总被引:4,自引:0,他引:4  
A physical and mathematical model for wine fermentation kinetics has been developed to predict sugar utilization curves based on experimental data from wine fermentations with various initial nitrogen and sugar concentrations in the juice. The model is based on: (1) yeast cell growth limited by nitrogen; (2) sugar utilization rates and ethanol production rates proportional solely to the number of viable cells; and (3) a death rate for cells proportional to alcohol content. All but one parameter in the model can be estimated from existing data. However, experiments to find this final parameter, a constant describing cell death, indicate that cell death may not be the critical factor in determining fermentation kinetics as cell viability remains significant until sugar utilization has ceased. The model, nevertheless, predicts a transition from normal to sluggish to stuck fermentations as initial nitrogen levels decrease. It also predicts that fermentations with high initial Brix levels may go to completion when supplemented with nitrogen in the form of ammonia. Therefore, we hypothesize that the model is valid but that ethanol causes the yeast cells to become inactive while remaining viable. Experimental verification of the model has been performed using flask-scale experiments. The model has also been used to evaluate the possibility of using nitrogen or viable cell additions to avoid or correct problem (i.e., sluggish or stuck) fermentations.  相似文献   

2.
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology.  相似文献   

3.
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35 degrees C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35 degrees C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology.  相似文献   

4.
Biomass content governs fermentation rate in nitrogen-deficient wine musts   总被引:1,自引:0,他引:1  
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.  相似文献   

5.
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.  相似文献   

6.
Red wine fermentations are performed in the presence of grape skins and seeds to ensure the extraction of color and other phenolics. The presence of these solids results in two distinct phases in the fermentor, as the solids float to the top to form a “cap.” Modeling of red wine fermentation is, therefore, complex and must consider spatial heterogeneity to predict fermentation kinetics. We have developed a reactor-engineering model for red wine fermentations that includes the fundamentals of fermentation kinetics, heat transfer, diffusion, and compressible fluid flow. To develop the heat transfer component of the model, the heat transfer properties of grapes were experimentally determined as a function of fermentation progression. COMSOL was used to solve all components of the model simultaneously utilizing a finite element analysis approach. Predictions from this model were validated using prior experimental work. Model prediction and experimental data showed excellent agreement. The model was then used to predict spatial profiles of active yeast cell concentration and ethanol productivity, as well as liquid velocity profiles. Finally, the model was used to predict how these gradients would change with differences in initial bioavailable nitrogen concentration, a key parameter in predicting fermentation outcome in nitrogen-limited wine fermentations.  相似文献   

7.
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.  相似文献   

8.
9.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

10.
Industrial fermentations typically use media that are balanced with multiple substitutable substrates including complex carbon and nitrogen source. Yet, much of the modeling effort to date has mainly focused on defined media. Here, we present a structured model that accounts for growth and product formation kinetics of rifamycin B fermentation in a multi-substrate complex medium. The phenomenological model considers the organism to be an optimal strategist with an in-built mechanism that regulates the sequential and simultaneous uptake of the substrate combinations. This regulatory process is modeled by assuming that the uptake of a substrate depends on the level of a key enzyme or a set of enzymes, which may be inducible. Further, the fraction of flux through a given metabolic branch is estimated using a simple multi-variable constrained optimization. The model has the typical form of Monod equation with terms incorporating multiple limiting substrates and substrate inhibition. Several batch runs were set up with varying initial substrate concentrations to estimate the kinetic parameters for the rifamycin overproducer strain Amycolatopsis mediterranei S699. Glucose and ammonium sulfate (AMS) demonstrated significant substrate inhibition toward growth as well as product formation. The model correctly predicts the experimentally observed regulated simultaneous uptake of the substitutable substrate combinations under different fermentation conditions. The modeling results may have applications in the optimization and control of rifamycin B fermentation while the modeling strategy presented here would be applicable to other industrially important fermentations.  相似文献   

11.
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed.  相似文献   

12.
As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.  相似文献   

13.
Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.  相似文献   

14.

Background  

Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN) content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile.  相似文献   

15.
Discrete oxygen additions during oenological fermentations can have beneficial effects both on yeast performance and on the resulting wine quality. However, the amount and time of the additions must be carefully chosen to avoid detrimental effects. So far, most oxygen additions are carried out empirically, since the oxygen dynamics in the fermenting must are not completely understood. To efficiently manage oxygen dosage, we developed a mass balance model of the kinetics of oxygen dissolution and biological uptake during wine fermentation on a laboratory scale. Model calibration was carried out employing a novel dynamic desorption-absorption cycle based on two optical sensors able to generate enough experimental data for the precise determination of oxygen uptake and volumetric mass transfer coefficients. A useful system for estimating the oxygen solubility in defined medium and musts was also developed and incorporated into the mass balance model. Results indicated that several factors, such as the fermentation phase, wine composition, mixing and carbon dioxide concentration, must be considered when performing oxygen addition during oenological fermentations. The present model will help develop better oxygen addition policies in wine fermentations on an industrial scale.  相似文献   

16.
Important oenological properties of wine depend on the winemaking yeast used in the fermentation process. There is considerable controversy about the quality of yeast, and a simple and cheap analytical methodology for quality control of yeast is needed. Gravitational field flow fractionation (GFFF) was used to characterize several commercial active dry wine yeasts from Saccharomyces cerevisiae and Saccharomyces bayanus and to assess the quality of the raw material before use. Laboratory-scale fermentations were performed using two different S. cerevisiae strains as inocula, and GFFF was used to follow the behavior of yeast cells during alcoholic fermentation. The viable/nonviable cell ratio was obtained by flow cytometry (FC) using propidium iodide as fluorescent dye. In each experiment, the amount of dry wine yeast to be used was calculated in order to provide the same quantity of viable cells. Kinetic studies of the fermentation process were performed controlling the density of the must, from 1.071 to 0.989 (20/20 density), and the total residual sugars, from 170 to 3 g/L. During the wine fermentation process, differences in the peak profiles obtained by GFFF between the two types of commercial yeasts that can be related with the unlike cell growth were observed. Moreover, the strains showed different fermentation kinetic profiles that could be correlated with the corresponding fractograms monitored by GFFF. These results allow optimism that sedimentation FFF techniques could be successfully used for quality assessment of the raw material and to predict yeast behavior during yeast-based bioprocesses such as wine production.  相似文献   

17.
18.
Nitrogen has a strong impact on the key bio-mechanisms involved during the grape-must fermentation but also on the synthesis of flavour markers determining the aromatic profile of the wine. This paper first presents a consistent dynamical mass balance model describing the main physiological phenomena implied in standard batch fermentations, i.e. consumption of sugar and nitrogen and synthesis of ethanol. It also includes nitrogen compounds such as hexose transporters. Moreover, a common practice in wine-making is the addition of nitrogen during the fermentation in order to boost and shorten the process duration. A tractable representation of this boost effect has therefore been developed as an extension of the first model. It is apparent that yeast makes a different use of nitrogen depending on the fermentation stage at which the addition is effected, balancing the regrowth of biomass and the synthesis of supplementary hexose transporters. These models have been validated in line with experimental evidence deduced from extensive experimental studies.  相似文献   

19.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine.  相似文献   

20.
Sluggish and stuck (i.e., very delayed or incomplete) fermentations have been often observed in wine making. Some of them appeared to be associated with insufficient levels of yeast nutrients such as assimilable nitrogen. In these conditions, sugar transport catabolite inactivation, which is triggered by the protein synthesis arrest, may account in part for the inhibition of fermentation. Moreover, this mechanism of inhibition may explain the failure of added ammoniacal nitrogen to nitrogen-limited musts to restore or elevate rate of fermentation after the early yeast growth phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号