首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunoglobulin-related chains of cell-surface receptors for the Fc region of immunoglobulins (FCERIα, FcγRI, FcγRII, and FcγRIIIα) are encoded by members of a gene family. Phylogenetic analysis of representative members of this family from mammals revealed that FcγRIIIα genes of human, mouse, and rat are not orthologous to one another in the region of the gene encoding the Immunoglobulin C2-set domains. In phylogenetic trees of this region, FcγRIIIα and FcγRII clustered together. However, in trees based on both coding and noncoding regions 5′ and 3′ to the C2 domains, FcγRIIIα genes of human, mouse, and rat clustered together. This pattern of relationship is most easily explained as a result of two independent recombinational events occurring in the mouse and rat after these two species diverged, in each of which the exons encoding the C2 domains were donated to an FcγRIIIα gene by an FcγRII gene.  相似文献   

2.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

3.
4.
The hisA and hisF genes belong to the histidine operon that has been extensively studied in the enterobacteria Escherichia coli and Salmonella typhimurium where the hisA gene codes for the phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase (EC 5.3.1.16) catalyzing the fourth step of the histidine biosynthetic pathway, and the hisF gene codes for a cyclase catalyzing the sixth reaction. Comparative analysis of nucleotide and predicted amino acid sequence of hisA and hisF genes in different microorganisms showed extensive sequence homology (43% considering similar amino acids), suggesting that the two genes arose from an ancestral gene by duplication and subsequent evolutionary divergence. A more detailed analysis, including mutual information, revealed an internal duplication both in hisA and hisF genes in each of the considered microorganisms. We propose that the hisA and hisF have originated from the duplication of a smaller ancestral gene corresponding to half the size of the actual genes followed by rapid evolutionary divergence. The involvement of gene elongation, gene duplication, and gene fusion in the evolution of the histidine biosynthetic genes is also discussed. Correspondence to: M. Bazzicalupo  相似文献   

5.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

6.
Peatman E  Liu Z 《Immunogenetics》2007,59(8):613-623
Chemokines are a superfamily of cytokines responsible for regulating cell migration under both inflammatory and physiological conditions. CC chemokines are the largest subfamily of chemokines, with 28 members in humans. A subject of intense study in mammalian species, the known functional roles of CC chemokines ligands in both developmental and disease conditions continue to expand. They are also an important family for the study of gene copy number variation and tandem duplication in mammalian species. However, little is known regarding the evolutionary origin and status of these ligands in primitive vertebrates such as teleost fish. In this paper, we review the evolution of the teleost fish CC chemokine gene family, noting evidence of widespread tandem gene duplications and examining the implications of this phenomenon on immune diversity. Through extensive phylogenetic analysis of the CC chemokine sets of four teleost species, zebrafish, catfish, rainbow trout, and Atlantic salmon, we identified seven large groups of CC chemokines. It appeared that several major groups of CC chemokines are highly related including the CCL19/21/25 group, the CCL20 group, CCL27/28 group, and the fish-specific group. In the three remaining groups that contained the largest number of members, the CCL17/22 group, the MIP group, and the MCP group, similarities among species members were obscured by rapid, tandem duplications that may contribute to immune diversity.  相似文献   

7.
Gene duplication and gene loss as well as other biological events can result in multiple copies of genes in a given species. Because of these gene duplication and loss dynamics, in addition to variation in sequence evolution and other sources of uncertainty, different gene trees ultimately present different evolutionary histories. All of this together results in gene trees that give different topologies from each other, making consensus species trees ambiguous in places. Other sources of data to generate species trees are also unable to provide completely resolved binary species trees. However, in addition to gene duplication events, speciation events have provided some underlying phylogenetic signal, enabling development of algorithms to characterize these processes. Therefore, a soft parsimony algorithm has been developed that enables the mapping of gene trees onto species trees and modification of uncertain or weakly supported branches based on minimizing the number of gene duplication and loss events implied by the tree. The algorithm also allows for rooting of unrooted trees and for removal of in-paralogues (lineage-specific duplicates and redundant sequences masquerading as such). The algorithm has also been made available for download as a software package, Softparsmap.  相似文献   

8.
In common with many other groups, nematodes express globins with unknown functions. Nematode globin-like genes can be divided into class 1 globins, similar to vertebrate myoglobins, and a wide range of additional classes. Here we show that class 1 nematode globins possess a huge amount of diversity in gene sequence and structure. There is evidence for multiple events of gene duplication, intron insertion and loss between species, and for allelic variation effecting both synonymous and non-synonymous sites within species. We have also examined gene expression patterns in class I globins from a variety of species. The results show variation in the degree of gene expression, but the tissue specificity and temporal specificity of expression may be more conserved in the phylum. Because the structure-function relationships for the binding and transport of oxygen by globins are well understood, the consequences of genetic variation causing amino acid changes are explored. The gene family shows great promise for discovering unique insights into both structure-function relationships of globins and their physiologial roles.  相似文献   

9.
A cytochrome P450 gene, Cyp9m10, is more than 200-fold overexpressed in a pyrethroid resistant strain of Culex quinquefasciatus, JPal-per. The haplotype of this strain contains two copies of Cyp9m10 resulted from recent tandem duplication. In this study, we discovered and isolated a Cyp9m10 haplotype closely related to this duplicated Cyp9m10 haplotype from JHB, a strain used for the recent genome project for this mosquito species. The isolated haplotype (JHB-NIID-B haplotype) shared the same insertion of a transposable element upstream of the coding region with JPal-per strain but not duplicated. The JHB-NIID-B haplotype was considered to have diverged from the JPal-per lineage just before the duplication event. Cyp9m10 was moderately overexpressed in larvae with the JHB-NIID-B haplotype. The overexpressions in JHB-NIID-B and JPal-per haplotypes were developmentally regulated in similar pattern indicating both haplotypes share a common cis-acting mutation responsible for the overexpressions. The isolated moderately overexpressed haplotype conferred resistance, however, its efficacy was relatively small. We hypothesized that the first cis-acting mutation modified the consequence of the subsequent duplication in JPal-per lineage to confer stronger phenotypic effect than that if it occurred before the first cis-acting mutation.  相似文献   

10.
The sequence coding for a snake venom phospholipase A2 (PLA2), BJUPLA2, has been cloned from a Bothrops jararacussu venom gland cDNA library. The cDNA sequence predicts a precursor containing a 16-residue signal peptide followed by a molecule of 122 amino acid residues with a strong sequence similarity to group II snake venom PLA2's. A striking feature of the cDNA is the high sequence conservation of the 5 and 3 untranslated regions in cDNAs coding for PLA2's from a number of viper species. The greatest sequence variation was observed between the regions coding for the mature proteins, with most substitutions occurring in nonsynonymous sites. The phylogenetic tree constructed by alignment of the amino acid sequence of BJUPLA2 with group II PLA2's in general groups them according to current taxonomical divisions and/or functional activity. It also suggests that gene duplications may have occurred at a number of different points during the evolution of snake venom group II PLA2's.The nucleotide sequence reported in this paper has been submitted to the GenBank/EMBL Data Bank with accession number X76289.Correspondence to: A.M. Moura-da-Silva  相似文献   

11.
In humans, there are two skeletal muscle α‐actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in α‐actinin‐3 due to the common ACTN3 R577X polymorphism. The α‐actinins are an ancient family of actin‐binding proteins with structural, signalling and metabolic functions. The skeletal muscle α‐actinins diverged ~250–300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why α‐actinin‐2 cannot completely compensate for the absence of α‐actinin‐3. This paper focuses on the role of skeletal muscle α‐actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.  相似文献   

12.
The Groucho/Tle family of corepressor proteins has important roles in development and in adult tissue in both Protostomes and Deuterostomes. In Drosophila, a single member of this family has been identified. Unlike in Protostomes, most Deutrostomes contain more than two full-length Tle genes. In this study, I analyse the genomic organization and phylogenetic relationship between the long and short forms of the Groucho/Tle family members in Chordata. The genomic location and sequence similarities suggest that Aes/Grg5 and Tle6/Grg6 arose from duplication of the Tle2 gene; each evolved independently and acquired new functions as negative regulators of the other Tle proteins. Based on these data, a model for Groucho/Tle gene evolution is proposed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5′ and 3′ flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5′ flanking sequence and 1596 nt of 3′ flanking sequence that are “unique”; between these are eight repeat units, including the eight GH genes/pseudogenes. The breakpoints between these repeats are very similar, indicating a regular pattern of gene duplication. These breakpoints do not correspond to those found in the much less regular human GH gene cluster. This and phylogenetic analysis of the repeat units within the marmoset gene cluster strongly support the independent origin of these gene clusters, and the idea that the episode of rapid evolution that occurred during GH evolution in primates preceded the gene duplications. The marmoset GH gene cluster also differs from that of human in having fewer and more evenly distributed Alu sequences (a single pair in each repeat unit) and a “P-element” upstream of every gene/pseudogene. In human there is no P-element upstream of the gene encoding pituitary GH, and these elements have been implicated in placental expression of the other genes of the cluster. The GH gene clusters in marmoset and capuchin appear to have arisen as the consequence of a single-gene duplication event, but in capuchin there was then a remarkable expansion of the GH locus, giving at least 40 GH-like genes and pseudogenes. Thus even among NWMs the GH gene cluster is very variable. [Reviewing Editor: Nicolas Galtier]  相似文献   

14.
Genes and proteins form complex dynamical systems or gene regulatory networks (GRN) that can reach several steady states (attractors). These may be associated with distinct cell types. In plants, the ABC combinatorial model establishes the necessary gene combinations for floral organ cell specification. We have developed dynamic gene regulatory network (GRN) models to understand how the combinatorial selection of gene activity is established during floral organ primordia specification as a result of the concerted action of ABC and non-ABC genes. Our analyses have shown that the floral organ specification GRN reaches six attractors with gene configurations observed in primordial cell types during early stages of flower development and four that correspond to regions of the inflorescence meristem. This suggests that it is the overall GRN dynamics rather than precise signals that underlie the ABC model. Furthermore, our analyses suggest that the steady states of the GRN are robust to random alterations of the logical functions that define the gene interactions. Here we have updated the GRN model and have systematically altered the outputs of all the logical functions and addressed in which cases the original attractors are recovered. We then reduced the original three-state GRN to a two-state (Boolean) GRN and performed the same systematic perturbation analysis. Interestingly, the Boolean GRN reaches the same number and type of attractors as reached by the three-state GRN, and it responds to perturbations in a qualitatively identical manner as the original GRN. These results suggest that a Boolean model is sufficient to capture the dynamical features of the floral network and provide additional support for the robustness of the floral GRN. These findings further support that the GRN model provides a dynamical explanation for the ABC model and that the floral GRN robustness could be behind the widespread conservation of the floral plan among eudicotyledoneous plants. Other aspects of evolution of flower organ arrangement and ABC gene expression patterns are discussed in the context of the approach proposed here. álvaro Chaos, Max Aldana and Elena Alvarez-Buylla contributed equally to this work.  相似文献   

15.
We report the discovery of previously unrecognised short consensus repeats (SCRs) within human and chimpanzee CR1 and CR1L. Analysis of available genomic, protein and expression databases suggests that these are actually genomic remnants of SCRs previously reported in other complement control proteins (CCPs). Comparison with the nucleotide motifs of the 11 defined subfamilies of SCRs justifies the designation g-like because of the close similarity to the g subfamily found in CR2 and MCP. To date, we have identified five such SCRs in human and chimpanzee CR1, one in human and chimpanzee CR1L, but none in either rat or mouse Crry in keeping with the number of internal duplications of the long homologous repeat (LHR) found in CR1 and CR1L. In fact, at the genomic level, the ancestral LHR must have contained eight SCRs rather than seven as previously thought. Since g-like SCRs are found immediately downstream of d SCRs, we suggest that there must have been a functional dg set which has been retained by CR2 and MCP but which is degenerate in CR1 or CR1L. Interestingly, dg is also present in the CR2 component of mouse CR1. The degeneration of the g SCR must have occurred prior to the formation of primate CR1L and prior to the duplication events which resulted in primate CR1. In this context, the apparent conservation of g-like SCRs may be surprising and may suggest the existence of mechanisms unrelated to protein coding. These results provide examples of the many processes which have contributed to the evolution of the extensive repertoire of CCPs.  相似文献   

16.
Electrophoretic variants of two carbonic anhydrase enzymes, CAR-1 (CA I) and CAR-2 (CA II), have been found in the laboratory mouse, Mus musculus. These two loci are closely linked to each other and are located on chromosome 3 near its centromere. The close linkage of Car-1 and Car-2 supports the hypothesis that the present-day carbonic anhydrase loci are the result of tandem duplication of an earlier carbonic anhydrase locus with subsequent divergence. The red blood cells of mice of the subspecies M. m. casteneus have significantly reduced levels of CAR-1 and CAR-2.This research was supported in part by Research Grants GM-20919 from the National Institute of General Medical Sciences and CA-01074 from the National Cancer Institute, and by Contracts E(11-1)-3267 with the Energy Research and Development Administration and NO1-ES-4-2159 with the National Institute of Environmental Health Sciences. The Jackson Laboratory is fully certified by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

17.
Annexin homologues have been found in animals, plants, and distinct protist lineages. We report the identification of the first fungal annexin, encoded by the anx14 gene of the filamentous ascomycete Neurospora crassa. Annexins have a complex evolutionary history and exhibit a large number of gene duplications and gene losses in various taxa, including the complete loss of annexin sequences from another ascomycete, the budding yeast Saccharomyces cerevisiae. Surprisingly, the N. crassa annexin homologue is most closely related to the annexin homologue of the slime mold Dictyostelium discoideum, suggesting a phylogenetic link between cellular slime molds and true fungi. Both of these annexin homologues are closely related to the family of annexin homologues present in animals, an observation consistent with the existence of the animal–fungal clade. These data further suggest that the gene duplications that generated the family of annexin sequences present in animals, fungi, and slime molds began prior to the divergence of these taxa. Received: 10 December 1997 / Accepted: 17 April 1998  相似文献   

18.
All chlorophyll (Chl)-binding proteins constituting the photosynthetic apparatus of both prokaryotes and eukaryotes possess hydrophobic domains, corresponding to membrane-spanning alpha-helices (MSHs). Hydrophobic cluster analysis of representative members of the different Chl protein superfamilies revealed that all Chl proteins except the five-helix reaction center II proteins and the small subunits of photosystem I possess related domains. As a major conclusion, we found that the eukaryotic antennae likely share a common precursor with the prokaryotic Chl a/b antennae from Chl-b-containing oxyphotobacteria. From these data, we propose a global scheme for the evolution of these proteins from a one-MSH ancestor.  相似文献   

19.
20.
The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号