首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat taste cells responded to K-benzoate solutions higher than the threshold concentrations (0.03-0.3 M) with a depolarizing receptor potential, but they responded to K-benzoate lower than the thresholds with a hyperpolarizing receptor potential. In either depolarizing or hyperpolarizing receptor potentials the rise time decreased with increasing amplitude, but the fall time increased with increasing amplitude. During generation of either depolarizing or hyperpolarizing receptor potentials the input resistance of taste cells decreased with increasing amplitude. Application of the mixtures of various concentrations of NaCl and 0.05 M K-benzoate resulted in a reduction of receptor potential amplitude, as compared with that evoked by application of NaCl alone. It is concluded that a depression of gustatory neural impulse frequency by low concentrations of K-benzoate is mainly due to the hyperpolarizing receptor potential of taste cells elicited by the K-benzoate solutions.  相似文献   

2.
The frog tongue was perfused through its artery with a Ringer solution using a peristaltic pump, and a method was developed to record stable intracellular receptor potentials of taste cells. Perfusing at 0.05 ml/min with a Ringer solution containing 5% dextran did not cause tongue edema, but perfusing at the same rate with Ringer without dextran caused edema. After perfusion at 0.05 ml/min with 100 mM K Ringer, the membrane potential of taste cells gradually decreased and reached a constant level in about 30 min, indicating that the intercellular fluid of the tongue could be replaced within this time period. While the artery of the frog tongue was perfused at 0.05 ml/min with Ringer containing 5% dextran, intracellular receptor potentials of taste cells elicited by four basic taste stimuli (1 M NaCl, 10 mM quinine-HCl (Q-HCl), 1 mM acetic acid and 1 M galactose) were similar to those obtained from the control taste cells under normal blood flow.  相似文献   

3.
1. The mean resting potential of supporting cells in the frog taste organ was -19.1 mV. The supporting cells responded to the four basic taste stimuli with a depolarization but responded to water with a depolarization or a hyperpolarization. 2. The membrane resistances of supporting cells decreased during stimulation with sucrose, NaCl and acetic acid, but increased during stimulation with Q-HCl and water. 3. Reversal potential of the depolarizing response for 0.5 M NaCl in supporting cells was +7.6 mV. The depolarizing responses for Q-HCl and acetic acid were independent of the membrane potential level. 4. These results suggest that the characteristics of taste responses in supporting cells are similar to those in taste cells.  相似文献   

4.
Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.  相似文献   

5.
Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis.  相似文献   

6.
The structure of the taste organ and the physiological propertiesof the taste cell of the bullfrog (Rana catesbeiana) after theglossopharyngeal nerve transection were investigated. The frogtaste organ is composed of taste, supporting and basal cells.As nerve terminals within the taste organ degenerated, nerveresponses to mechanical, chemical and electrical stimuli graduallydeclined and finally ceased in 7 days during the summer and15 days during the winter. However, the taste cells still hadresting potentials and responded to four basic taste stimuliby generating receptor potentials with the various lengths ofduration, even 140 days after denervation. The glossopharyngealnerve transection affected the magnitude of resting potentialssignificantly. However, the taste, supporting and basal cellsmaintained their normal structures 140 days after surgery. Itis concluded, therefore, that neural dependency of the frogtaste organ is not as great as that in mammals.  相似文献   

7.
Intracellular recordings of membrane potentials of mudpuppy lingual cells were made with micropipette electrodes. Three types of cells were distinguished by their responses to chemical stimulation. Surface epithelial (SE) cells outside of taste buds responded with large membrane potential and resistance changes to a variety of stimuli representing the four taste qualities. Salts and acids evoked particularly large potential changes, and MgCl2, acids, and quinine greatly increased the membrane resistance. One type of taste bud cell (TB-1) was characterized by large depolarizations to K salts, and the other type of taste bud cell (TB-2) characteristically hyperpolarized to MgCl2, acid, and sugar solutions. Membrane resistance changes accompanying TB-1 and TB-2 cell responses were relatively small compared to those of SE cells. Electrotonic coupling was observed between pairs of SE and TB-2 cells but not for pairs of TB-1 cells nor cells of different types. After recording cell responses, dye-marking allowed verification of results in situ and histologically. From the identification of cells in section, it is hypothesized the TB-1 and TB- 2 cells correspond to light and dark cells, respectively. Responses of TB-1 cells imply a taste receptive function; wheras TB 2-cell responses suggest secretory, supportive, and (or) receptive functions. Factors affecting cellular characteristics, non-taste bud cell responsiveness, response mechanisms, and function of electrotonic coupling are discussed in relation to taste reception.  相似文献   

8.
The sense of taste is a chemosensory system responsible for basic food appraisal. Humans distinguish between five primary tastes: bitter, sweet, sour, salty and umami. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the TAS2R/T2R family of taste receptor genes. TAS2R receptors are expressed at the surface of taste receptor cells and are coupled to G proteins and second messenger pathways. We have identified, cloned and characterized 11 new bitter taste receptor genes and four new pseudogenes that belong to the human TAS2R family. Their encoded proteins have between 298 and 333 amino acids and share between 23 and 86% identity with other human TAS2R proteins. Screening of a mono-chromosomal somatic cell hybrid panel to assign the identified bitter taste receptor genes to human chromosomes demonstrated that they are located in chromosomes 7 and 12. Including the 15 sequences identified, the human TAS2R family is composed of 28 full-length genes and 16 pseudogenes. Phylogenetic analyses suggest a classification of the TAS2R genes in five groups that may reflect a specialization in the detection of specific types of bitter chemicals.  相似文献   

9.
Grant J 《PloS one》2012,7(2):e31697
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.  相似文献   

10.
Taste receptor cells are the taste sensation elements expressing sour, salty, sweet, bitter and umami receptors, respectively. There are cell-to-cell communications between different types of cells. Nevertheless, the mechanism of taste sensation and taste information coded by taste receptor cell is not well understood at present and it is a long-standing issue. In order to explore taste sensation and analyze taste-firing responses from another point of view, we present a promising biomimetic taste receptor cell-based biosensor. The temporal firing responses to different tastants are recorded. Meanwhile, we investigate the firing rate and temporal firing of taste receptor cells. The experimental results are consistent with that from patch clamp and molecular biology experiment. Firing rate is dependent on the concentration of stimulus. PCA analysis (principal component analysis) of the temporal firing responses shows that the responses from different types of taste receptor cells can be distinguished. Furthermore, exogenous ATP is applied to mimic the effects of transmitter ATP (adenosine triphosphate) released from type II cells onto type III cells. Both enhanced and inhibitory effects on spontaneous firing are observed. This novel biomimetic hybrid biosensor provides a potential solution to investigate the taste sensation and coding mechanisms in a non-invasive way.  相似文献   

11.
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.  相似文献   

12.
13.
14.
Maruyama Y  Yasuda R  Kuroda M  Eto Y 《PloS one》2012,7(4):e34489
Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+). CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.  相似文献   

15.
The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.  相似文献   

16.
Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.  相似文献   

17.
Taste signal is received in taste buds and transmitted via sensory afferent nerves to the brainstem. Although a signaling pathway involving phospholipase C-β2 has been shown to transduce taste signals of bitterness, sweetness and umami in taste receptor cells (Type II cells), these taste receptor cells appear to be different from the presynaptic cells (Type III cells) containing afferent synapses associated with nerve processes. To elucidate the neurotransmission system in the taste receptor cells expressing phospholipase C-β2, we searched for candidate molecules involved in the neurotransmission, and identified synaptophysin. Synaptophysin was expressed in the taste receptor cells expressing phospholipase C-β2, as well as in the presynaptic cells harboring synaptic structures with taste nerves and containing serotonin. Synaptophysin-immunoreactive signals were not limited to gustducin-positive bitter taste receptor cells, and sweet/umami taste receptor cells were indicated to also express synaptophysin. Expression of synaptophysin was already initiated 6 days after cell division, almost in synchrony with the initiation of phospholipase C-β2 expression. Synaptophysin-containing cells co-expressed vesicular-associated membrane protein 2, a v-SNARE molecule which is important for exocytosis. In addition, majority of the synaptophysin-expressing cells also expressed cholecystokinin, a neuropeptide expressed in taste buds. These results suggest that the taste receptor cells have a neurotransmission system involving synaptophysin, which occurs alternatively or additionally to a recently shown hemichannel system.  相似文献   

18.
The sense of taste plays a critical role in the life and nutritional status of organisms. During the last decade, several molecules involved in taste detection and transduction have been identified, providing a better understanding of the molecular physiology of taste receptor cells. However, a comprehensive catalogue of the taste receptor cell signaling machinery is still unavailable. We have recently described the occurrence of calcium signaling mechanisms in taste receptor cells via apparent store-operated channels and identified Trpm5, a novel candidate taste transduction element belonging to the mammalian family of transient receptor potential channels. Trpm5 is expressed in a tissue-restricted manner, with high levels in gustatory tissue. In taste cells, Trpm5 is co-expressed with taste-signaling molecules such as alpha-gustducin, Ggamma(13), phospholipase C beta(2) and inositol 1,4,5-trisphosphate receptor type III. Biophysical studies of Trpm5 heterologously expressed in Xenopus oocytes and mammalian CHO-K1 cells indicate that it functions as a store-operated channel that mediates capacitative calcium entry. The role of store-operated channels and Trpm5 in capacitative calcium entry in taste receptor cells in response to bitter compounds is discussed.  相似文献   

19.
Taste receptor cells are the taste sensation elements for sour, salty, sweet, bitter and umami sensations. It was demonstrated that there are cell-to-cell communications between type II (sour) and type III (sweet, bitter and umami) taste cells. Serotonin (5-HT) is released from type III cells, which is the only type of taste cells that has synaptic process with sensory afferent fibers. Then, taste information is transmitted via fibers to the brain. During this process, 5-HT plays important roles in taste information transmission. In order to explore a sensor to detect 5-HT released from taste cell or taste cell networks, we develop a 5-HT sensitive sensor based on LAPS chip. This sensor performs with a detection limit of 3.3 × 10(-13)M and a sensitivity of 19.1 mV per concentration decade. Upon the stimuli of sour and mix (bitter, sweet and umami) tastants, 5-HT released from taste cells could be detected flexibly, benefit from the addressability of LAPS chip. The experimental results show that the local concentration of 5-HT is around several nM, which is consistent with those from other methods. In addition, immunofluorescent imaging technique is utilized to confirm the functional existence of both type II and III cells in a cluster of isolated taste cells. Different types of taste cells are labeled with corresponding specific antibody. This 5-HT sensitive LAPS chip provides a potential and promising way to detect 5-HT and to investigate the taste coding and information communication mechanisms.  相似文献   

20.
The chincona alkaloid quinine is known to be a bitter tasting substance for various vertebrates. We examined the effects of quinine on isolated taste receptor cells from the bullfrog (Rana catesbeiana). Membrane currents were recorded by whole-cell recording, while quinine hydrochloride was applied extracellularly from a puffer pipette. At the resting potential (-77 +/- 9 mV, mean +/- SD, n = 49 cells), taste cells generated inward currents in response to quinine stimulation (> 1 mM), indicating a depolarizing response in the taste cells. Two types of current responses were observed; a newly found quinine-activated cationic conductance and a previously reported blocking effect of quinine on K+ conductances. The cationic current was isolated from the K+ current by using a Cs(+)-containing patch pipette. The relative permeabilities (Pion) of the quinine-activated cationic conductance were: PNa/PK/PCs = 1:0.5:0.42. The quinine dose-response relation was described by the Hill equation with the K1/2 of 3.6 mM and Hill coefficient of 5.3. When extracellular [Ca2+] (1.8 mM) was reduced to nominally free, the conductance was enhanced by about sixfold. This property is consistent with observations on quinine responses recorded from the gustatory nerve, in vivo. The quinine-induced cationic current was decreased with an application of 8-bromo-cAMP. We conclude that the bitter substance quinine activates a cation channel in taste receptor cells and this channel plays an important role in bitter taste transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号