首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol is an addictive drug that deteriorates different neuronal pathways in the CNS, leading to the induction of cognitive dysfunction. Neuroimaging analyses revealed that alcohol-induced brain damage appears to be region-specific and major dysmorphology has been observed in the prefrontal cortex and the white matter (WM) particularly in the corpus callosum (CC). Recent diffusion tensor imaging (DTI) analysis indicated that microstructural degradation was prominent in the genu followed by the body and the splenium of the CC. Molecular mechanisms underlying these structural changes are largely unknown. In this study, using 2D electrophoresis based proteomics approach, protein expression profiles in 25 genus samples (12 controls, 7 uncomplicated alcoholics and 6 complicated alcoholics with hepatic cirrhosis) were analysed and compared. Image analysis showed that 35 protein spots in the uncomplicated alcoholic and 56 in the complicated group were differentially altered compared to the control (P<0.05; ANOVA). In total of 91 spots, 25 spots were overlapped between two alcoholic groups. When protein expression profile of the genu was compared with those in other WMs [BA9 white matter (WM) and splenium] the highest number of region-specific proteins was identified in the genus indicating that genu might be the most sensitive and/or vulnerable region to chronic alcohol ingestion at least from the aspect of protein expression. Out of total 66 spots (identified as 50 different proteins), 31 spots (identified as 28 different proteins) were expressed only in the complicated group. This result indicates that alcohol-related liver dysfunction has synergetic effects on brain protein expression. It is also interesting to note that abnormality in thiamine-related cascade which was previously found in the BA9 WM was observed in the genu, but not in the splenium. It is therefore suggested that both hepatic and nutritious factors might be underlying the mechanisms of microstructural damage detected by DTI.  相似文献   

2.
It is widely accepted that the chronic use of alcohol induces metabolic abnormalities and neuronal damage in the brain, which can lead to cognitive dysfunction. Neuroimaging studies reveal that alcohol-induced brain damage is region specific and prominent damage has been observed in both gray and white matter of the prefrontal cortex, and a wide range of white matter structures including the corpus callosum. Molecular mechanisms underlying these structural changes are largely unknown. Using proteomics we have analysed the changes in protein expression in the splenium of the corpus callosum in two different alcoholic groups. Protein extracts from splenium of 22 human brains (nine controls, seven uncomplicated alcoholics and six complicated alcoholics with hepatic cirrhosis-designated complicated) were separated using two-dimensional gel electrophorosis. Image analysis revealed that there were significant alterations in protein expression for 25 protein spots in the uncomplicated alcoholic group and 45 in the complicated group compared to control (P<0.05; ANOVA). In a total of 72 spots (identified as 36 proteins), 15 (identified as 14 proteins) spots overlapped between two alcoholic groups. Another 32 protein spots (26 different proteins) were identified only in the complicated alcoholics. It is therefore possible that these 26 proteins in the complicated group are likely to be the results of hepatic compromise. When compared with our previous data of white matter from the prefrontal cortex in alcoholics, large numbers of identified proteins in the splenium are different. This suggests that there may be different mechanisms causing alcohol-induced brain damage in different regions of the white matter. Our data also indicate the importance of other pathways including oxidative stress, lipid peroxidation and apoptosis as potential causes of alcohol-induced brain damage.  相似文献   

3.
Antibodies were raised against specific peptides from N-terminal regions of the alpha1 and alpha3 isoforms of the GABA(A) receptor, and used to assess the relative expression of these proteins in the superior frontal and primary motor cortices of 10 control, nine uncomplicated alcoholic and six cirrhotic alcoholic cases were matched for age and post-mortem delay. The regression of expression on post-mortem delay was not statistically significant for either isoform in either region. In both cortical areas, the regression of alpha1 expression on age differed significantly between alcoholic cases, which showed a decrease, and normal controls, which did not. Age had no effect on alpha3 expression. The alpha1 and alpha3 isoforms were found to be expressed differentially across cortical regions and showed a tendency to be expressed differentially across case groups. In cirrhotic alcoholics, alpha1 expression was greater in superior frontal than in motor cortex, whereas this regional difference was not significant in controls or uncomplicated alcoholics. In uncomplicated alcoholics, alpha3 expression was significantly lower in superior frontal than in motor cortex. Expression of alpha1 was significantly different from that of alpha3 in the superior frontal cortex of alcoholics, but not in controls. In motor cortex, there were no significant differences in expression between the isoforms in any case group.  相似文献   

4.
Reduced and oxidized hepatic glutathione was evaluated during alcoholic and non alcoholic liver injury. We studied 35 chronic alcoholics, 20 patients with non alcoholic liver diseases, 15 control subjects. Hepatic glutathione was measured in liver biopsies and correlated with histology and laboratory tests. Alcoholic and non alcoholic patients exhibited a significant decrease of hepatic glutathione compared to control subjects (controls: 4.14 +/- 0.1 mumol/g liver; alcoholics: 2.55 +/- 0.1, p less than 0.001; non alcoholics 2.77 +/- 0.1, p less than 0.001). Oxidized glutathione was significantly higher in the two groups of patients compared to controls (controls: 4.4 +/- 0.2% of total; alcoholics 8.2 +/- 0.3, p less than 0.001; non alcoholics: 8.5 +/- 0.8, p less than 0.001). The decreased hepatic glutathione levels in patients with alcoholic and non alcoholic liver diseases may represent a contributing factor of liver injury and may enhance the risk of toxicity in these patients.  相似文献   

5.
It is well known that chronic, excessive consumption of alcohol can cause brain damage/structural changes in the regions important for neurocognitive function. Some of the damages are permanent, while others are reversible. Molecular mechanisms underlying alcohol-induced and/or -related brain damage are largely unknown, although it is generally believed that three factors (ethanol, nutritious and hepatic factors) play important roles. Recently, we have been employing a high-throughput proteomics technology to investigate several alcohol-sensitive brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol effects on the CNS at the level of protein expression. The changes of protein expression profiles in the hippocampus of alcoholic subjects were firstly demonstrated using 2D gel electrophoresis-based proteomics. Protein expression profiles identified in the hippocampus of alcoholic subjects were significantly different from those previously identified by our group in other brain regions of the same alcoholic cases, possibly indicating that these different brain regions react differently to chronic alcohol ingestion at the level of protein expression. Identified changes of protein expression associated with astrocyte and oxidative stress may indicate the possibility that increased levels of CNS ammonia and reactive oxygen species induced by alcoholic mild hepatic damage/dysfunction could cause selective damage in astrocytes of the hippocampus. Although our data did not demonstrate any evidence of direct alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches have proved to have the potential to dissect the mechanisms of complex brain disorders. Proteomics studies on human hippocampus, an important region for neurocognitive function and psychiatric illnesses (e.g., Alzheimer’s disease, alcoholism and schizophrenia) are still sparse, and further investigation is warranted to understand the underlying mechanisms.  相似文献   

6.
It is well known that chronic, excessive consumption of alcohol can cause brain damage/structural changes in the regions important for neurocognitive function. Some of the damages are permanent, while others are reversible. Molecular mechanisms underlying alcohol-induced and/or -related brain damage are largely unknown, although it is generally believed that three factors (ethanol, nutritious and hepatic factors) play important roles. Recently, we have been employing a high-throughput proteomics technology to investigate several alcohol-sensitive brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol effects on the CNS at the level of protein expression. The changes of protein expression profiles in the hippocampus of alcoholic subjects were firstly demonstrated using 2D gel electrophoresis-based proteomics. Protein expression profiles identified in the hippocampus of alcoholic subjects were significantly different from those previously identified by our group in other brain regions of the same alcoholic cases, possibly indicating that these different brain regions react differently to chronic alcohol ingestion at the level of protein expression. Identified changes of protein expression associated with astrocyte and oxidative stress may indicate the possibility that increased levels of CNS ammonia and reactive oxygen species induced by alcoholic mild hepatic damage/dysfunction could cause selective damage in astrocytes of the hippocampus. Although our data did not demonstrate any evidence of direct alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches have proved to have the potential to dissect the mechanisms of complex brain disorders. Proteomics studies on human hippocampus, an important region for neurocognitive function and psychiatric illnesses (e.g., Alzheimer's disease, alcoholism and schizophrenia) are still sparse, and further investigation is warranted to understand the underlying mechanisms.  相似文献   

7.
The aim of this study was to investigate the microstructural alterations of white matter (WM) in Alzheimer’s disease (AD) patients with apathy and to observe the relationships with the severity of apathy. Sixty drug-naïve subjects took part in this study (30 apathetic and 30 nonapathetic subjects with AD). The loss of integrity in WM was compared in AD patients with and without apathy through measurement of fractional anisotropy (FA) using by tract-based spatial statistics (TBSS). In addition, we explored the correlation pattern between FA values and the severity of apathy in AD patients with apathy. The apathy group had significantly reduced FA values (pcorrected<0.05) in the genu of the corpus callosum compared to the nonapathy group. The severity of apathy was negatively correlated with FA values of the left anterior and posterior cingulum, right superior longitudinal fasciculus, splenium, body and genu of the corpus callosum and bilateral uncinate fasciculusin the apathy group (pcorrected<0.05). This study was the first to explore FA values in whole brain WM in AD patients with apathy. The findings of these microstructural alterations of WM may be the key to the understanding of underlying neurobiological mechanism and clinical significances of apathy in AD.  相似文献   

8.
由于酗酒人数的增长,HBV感染合并酒精性肝病患者的数量在中国逐年增加,酒精性肝病与HBV感染会严重影响肝功能。目前中国已成为引起肝硬化的第二大病因。而乙型肝炎病毒感染合并酒精性肝病是最常见的,且会对肝脏造成严重的损伤。本实验的检测了NF-κB信号通路和IL-8、TNF-α和Cleaved caspase-3基因及蛋白的表达,结果表明,酒精性肝病合并HBV感染并发肝衰竭会激活NF-κB信号通路,并上调IL-8、TNF-α和Cleaved caspase-3基因和蛋白的表达,说明酒精性肝病合并HBV感染不仅对肝脏造成了极其严重的损伤,还造成肝脏组织或细胞炎症的发生和细胞凋亡及组织纤维化。通过以上的研究,本实验为揭示酒精性肝病合并HBV并发肝衰竭的分子机制,以及为后续研究酒精性肝病合并HBV并发肝衰竭的靶向治疗提供理论参考。  相似文献   

9.

Background

Diffusion tensor imaging (DTI) study revealed reduced fractional anisotropy (FA) values in the corpus callosum (CC) in migraine patients without aura. Abnormalities in white matter integrity, particularly in the CC, may affect inter-hemispheric resting state functional connectivity (RSFC). Unfortunately, relatively little is known about the alterations in functional interactions between the cerebral hemispheres during resting state in migraine patients without aura, and even less about how the inter-hemispheric RSFC are affected by the abnormalities of the CC.

Methods and findings

Twenty-one migraine patients without aura and 21 healthy controls participated in this study, age-, sex-, and education-matched. Tract-based spatial statistics (TBSS) was employed to investigate the white matter alterations of the CC. Meanwhile, voxel-mirrored homotopic connectivity (VMHC) was used to compare the inter-hemispheric RSFC differences between the patients and controls. TBSS analysis revealed reduced FA values in the genu and the splenium of CC in patient group. VMHC analysis showed decreased inter-hemispheric RSFC of anterior cingulate cortex (ACC) in migraine patients without aura relative to that of the controls. Furthermore, in migraine patients without aura, the reduced FA values of the genu of CC correlated with the decreased inter-hemispheric RSFC of the ACC.

Conclusions

Our findings demonstrated that the migraine patients without aura showed reduced FA values of the genu of CC and decreased inter-hemispheric RSFC of the ACC. The correlation between the above structural and functional changes suggested that the reduced fractional anisotropy (FA) of CC modulates inter-hemispheric VMHC in migraine patients without aura. Our results demonstrated that the VMHC alterations of ACC can reflect the FA changes of the genu of CC in migraine patients without aura.  相似文献   

10.
11.

Aims

Antioxidant system abnormalities have been associated with ethanol consumption. This study examines the effects of chronic ethanol consumption on oxidative balance, including selenium (Se) levels in alcoholic patients with or without liver disease, and if these measurements could be indicative of liver disease.

Main methods

Serum Se levels, antioxidant enzymes' activities, malondialdehyde (MDA) and protein carbonyl (PC) were determined in three groups of patients: alcoholics without liver disease, alcoholics with liver disease, and non-alcoholics with liver disease; and in healthy volunteers.

Key findings

Serum Se levels were lower in alcoholic patients and in patients affected by liver disease and especially lower in the alcoholic liver disease group. These values were correlated with the activity of glutathione peroxidase (GPx), the antioxidant selenoprotein. The antioxidant activities of the glutathione reductase (GR) and superoxide dismutase (SOD) were also lower in the three non-healthy groups. However, GR activity decreased and SOD activity increased in the non-alcoholic liver disease group versus alcoholic groups. Higher concentrations of PC in serum were found in non-healthy groups and were higher in alcoholic patients who also showed higher MDA levels. The highest MDA and PC levels were found in the alcoholic liver disease group.

Significance

We conclude that serum Se levels are drastically decreased in alcoholic liver disease patients, showing that this element has a direct correlation with GPx activity, and lipid oxidation, suggesting that the serum Se/MDA ratio could be an indicator of hepatic damage caused by alcohol consumption, and pointing to Se as a possible antioxidant therapy.  相似文献   

12.
Generation of oxygen free radicals and reactive aldehydes as a result of excessive ethanol consumption has been well established. Recent studies in human alcoholics and in experimental animal models have indicated that acetaldehyde, the first metabolite of ethanol, and the aldehydic products of lipid peroxidation can bind to proteins in tissues forming stable adducts. The demonstration of such adducts in zone 3 hepatocytes in alcoholics with an early phase of histological liver damage indicates that adduct formation may have an important role in the sequence of events leading to alcoholic liver disease. There may be interference with cellular functions, stimulation of fibrogenesis, and immunological responses. Autoantibodies towards distinct types of adducts have been shown to be associated with the severity of liver disease in alcoholic patients. High fat diet and/or iron supplementation combined with ethanol may increase the amount of aldehyde-derived epitopes and promote fibrogenesis in the liver. Recently, ethanol-derived protein modifications have also been found from other tissues exposed to ethanol and acetaldehyde, including rat brain after lifelong ethanol administration, pancreas, and rat muscle. Elevated adduct levels also occur in erythrocytes of alcoholics, which may be related to ethanol-induced morphological aberrations in hematopoiesis.  相似文献   

13.
14.
《Free radical research》2013,47(2):204-213
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β1, TNF-α and α1(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β1, TNF-α and α1 (I) collagen in hepatic tissues.  相似文献   

15.
To elucidate compositional changes of the corpus callosum with aging, the authors investigated age-related changes of elements and relationships with their element contents in the corpus callosum. After ordinary dissection by medical students at Nara Medical University was finished, the genu, trunk, and splenium of the corpus callosum were resected from the subjects ranging in age from 58 to 94 years. The element contents of the corpus callosum were determined by inductively coupled plasma-atomic emission spectrometry. The contents of Ca, P, S, Mg, Zn, Fe, and Na did not change significantly in the genu, trunk, and splenium of the corpus callosum with aging. Regarding the relationships among the element contents, significant correlations were found among the contents of Ca, P, S, Mg, and Fe in all of the genu, trunk, and splenium of the corpus callosum with some exceptions.  相似文献   

16.
Excessive alcohol ingestion is damaging and gives rise to a number of pathologies that influence nutritional status. Most organs of the body are affected such as the liver and gastrointestinal tract. However, skeletal muscle appears to be particularly susceptible, giving rise to the disease entity alcoholic myopathy. Alcoholic myopathy is far more common than overt liver disease such as cirrhosis or gastrointestinal tract pathologies. Alcohol myopathy is characterised by selective atrophy of Type II (anaerobic, white glycolic) muscle fibres: Type I (aerobic, red oxidative) muscle fibres are relatively protected. Affected patients have marked reductions in muscle mass and impaired muscle strength with subjective symptoms of cramps, myalgia and difficulty in gait. This affects 40-60% of chronic alcoholics (in contrast to cirrhosis, which only affects 15-20% of chronic alcohol misuers).Many, if not all, of these features of alcoholic myopathy can be reproduced in experimental animals, which are used to elucidate the pathological mechanisms responsible for the disease. However, membrane changes within these muscles are difficult to discern even under the normal light and electron microscope. Instead attention has focused on biochemical and other functional studies.In this review, we provide evidence from these models to show that alcohol-induced defects in the membrane occur, including the formation of acetaldehyde protein adducts and increases in sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (protein and enzyme activity). Concomitant increases in cholesterol hydroperoxides and oxysterol also arise, possibly reflecting free radical-mediated damage to the membrane. Overall, changes within muscle membranes may reflect, contribute to, or initiate the disturbances in muscle function or reductions in muscle mass seen in alcoholic myopathy. Present evidence suggest that the changes in alcoholic muscle disease are not due to dietary deficiencies but rather the direct effect of ethanol or its ensuing metabolites.  相似文献   

17.
目的:建立慢性酒精诱导的成年大鼠肝损伤动物模型,并进行茶多酚的干预,观察茶多酚的干预对慢性酒精诱导的肝损伤大鼠的防护作用及其可能的机制。方法:将36只SD大鼠适应性喂养一周后,随机分为对照组、酒精损伤组和茶多酚干预组(每组12只)。对照组大鼠用0.9%生理盐水按7 g/kg灌胃,酒精组用体积分数56%的红星牌白酒同剂量灌胃,茶多酚干预组在酒精灌胃同时给予0.25 g/kg剂量的茶多酚。每天定时灌胃一次,连续8周。8周后处死大鼠,取内脏脂肪和肝脏组织,以脂体比衡量内脏脂肪含量,以肝体比和油红O染色结果衡量肝脂质沉积,测定超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量、总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶(GSH-Px)活力等氧化应激指标,测定肝脏组织中脂肪酸转位酶(FAT/CD36)蛋白水平。结果:与对照组相比,酒精损伤组大鼠内脏脂肪含量、SOD/MDA比值、T-AOC和GSH-Px活力显著下降((P<0.05或P<0.01),肝体比、FAT/CD36蛋白水平显著提高(P<0.01),肝细胞中脂滴增加;与酒精损伤组相比,茶多酚干预组大鼠内脏脂肪含量、SOD/MDA比值、T-AOC和GSH-Px活力显著增加((P<0.05或P<0.01),肝体比、FAT/CD36蛋白水平显著下降(P<0.01),肝细胞中脂滴减少。结论:茶多酚干预能改善慢性酒精中毒大鼠肝脏的脂质沉积和氧化应激状态,并伴有肝细胞膜上FAT/CD36表达的减少。  相似文献   

18.
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β(1), TNF-α and α(1)(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β(1), TNF-α and α(1) (I) collagen in hepatic tissues.  相似文献   

19.
The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories.  相似文献   

20.
Mild to severe cognitive impairments are frequently observed symptoms in chronic alcoholics. Decline of cognitive function significantly affects patients' recovery process and prognosis. The hippocampal region is sensitive to the effects of alcohol and it has been suggested that alcohol-induced hippocampal damage and/or changes in neuronal circuitry play an important role in generating these symptoms. Although various hypotheses have been proposed, molecular mechanisms underlying these alterations in the hippocampus are largely unknown. In the present study, we employed a 2DE-based proteomics approach to compare the protein expression profiles of the hippocampus in human alcoholic and healthy control brains. In the alcoholic hippocampus, 20 protein spots were found to be differentially regulated, 2 increased and 18 decreased. Seventeen proteins were identified using mass spectroscopy and were subcategorized into three energy metabolic proteins, six protein metabolic proteins, four signalling proteins, two oxidative stress-related proteins, one vesicle trafficking protein and one cytoskeletal protein. Some of these proteins have been previously implicated in alcohol-induced brain pathology. Based upon the results, several hypotheses were generated to explain the mechanisms underlying possible functional and/or structural alterations induced by chronic alcohol use in this brain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号