首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Species complexes undergoing rapid radiation present a challenge in molecular systematics because of the possibility that ancestral polymorphism is retained in component gene trees. Coalescent theory has demonstrated that gene trees often fail to match lineage trees when taxon divergence times are less than the ancestral effective population sizes. Suggestions to increase the number of loci and the number of individuals per taxon have been proposed; however, phylogenetic methods to adequately analyze these data in a coalescent framework are scarce. We compare two approaches to estimating lineage (species) trees using multiple individuals and multiple loci: the commonly used partitioned Bayesian analysis of concatenated sequences and a modification of a newly developed hierarchical Bayesian method (BEST) that simultaneously estimates gene trees and species trees from multilocus data. We test these approaches on a phylogeny of rapidly radiating species wherein divergence times are likely to be smaller than effective population sizes, and incomplete lineage sorting is known, in the rodent genus, Thomomys. We use seven independent noncoding nuclear sequence loci (total approximately 4300 bp) and between 1 and 12 individuals per taxon to construct a phylogenetic hypothesis for eight Thomomys species. The majority-rule consensus tree from the partitioned concatenated analysis included 14 strongly supported bipartitions, corroborating monophyletic species status of five of the eight named species. The BEST tree strongly supported only the split between the two subgenera and showed very low support for any other clade. Comparison of both lineage trees to individual gene trees revealed that the concatenation method appears to ignore conflicting signals among gene trees, whereas the BEST tree considers conflicting signals and downweights support for those nodes. Bayes factor analysis of posterior tree distributions from both analyses strongly favor the model underlying the BEST analysis. This comparison underscores the risks of overreliance on results from concatenation, and ignoring the properties of coalescence, especially in cases of recent, rapid radiations.  相似文献   

2.
Several studies have shown that hybridization can be a creative process by acting as a conduit for the spread of adaptive traits between species, but few provide the mechanism that favours this spread. In the hybrid zone between the golden- (Manacus vitellinus) and white-collared (Manacus candei) manakins, sexual selection drives the introgression of golden/yellow plumage into the white species; however, the mechanism for the yellow male's mating advantage and the reasons why yellow plumage has not swept further into the white species remain mostly speculative. We quantified the colour properties of male plumage, the background and the ambient light at the hybrid zone, and allopatric golden and white populations. As measured by the perceived difference in colour between plumage and background, we found that yellow plumage appears more conspicuous than white plumage in the hybrid zone and allopatric golden-collar habitats, whereas white plumage appears more conspicuous than yellow plumage in the allopatric white-collared habitat. These results suggest a mechanism for the unidirectional spread of yellow plumage across the hybrid zone but slowed movement beyond it.  相似文献   

3.
In western Panama, an unusual hybrid zone exists between white-collared manakins, Manacus candei, and golden-collared manakins, M. vitellinus. Unidirectional introgression of plumage traits from vitellinus into candei has created a region in which all definitively plumaged males have a collar that is lemon-colored. These males are nearly indistinguishable from white-collared candei genetically and morphometrically, but strongly resemble golden-collared vitellinus due to the introgression of secondary sexual plumage traits, particularly the lemon-colored collar. The introgression could be explained by sexual selection for golden-collared traits or by a series of mechanisms that do not invoke sexual selection (e.g., neutral diffusion, dominant allele). Sexual selection on male-male interactions implies behavioral differences among the plumage forms--specifically that golden- and lemon-collared males should be more aggressive than white-collared males. In contrast, the nonsexual hypotheses predict behavioral similarity between lemon- and white-collared males, based on their nearly identical genetics. We tested the sexual selection hypothesis experimentally, by presenting males with taxidermic mounts of the three forms. As response variables, we monitored vocalizations and attacks on the mounts by replicate subject males. Both golden-collared and lemon-collared males were more likely to attack than were white-collared males, as predicted under sexual selection but not by the nonsexual hypotheses. Lemon-collared males were more vocally reactive than either parental form, contrary to the prediction of the nonsexual hypotheses. Our study demonstrates that sexual selection on male-male interactions may play an important role in the dynamics of character evolution and hybrid zones.  相似文献   

4.
BEST implements a Bayesian hierarchical model to jointly estimate gene trees and the species tree from multilocus sequences. It provides a new option for estimating species phylogenies within the popular Bayesian phylogenetic program MrBayes. The technique of simulated annealing is adopted along with Metropolis coupling as performed in MrBayes to improve the convergence rate of the Markov Chain Monte Carlo algorithm. AVAILABILITY: http://www.stat.osu.edu/~dkp/BEST.  相似文献   

5.
The growing use of molecular systematics in conservation has increased the importance of accurate resolution of taxonomic units and relationships. DNA data relate most directly to genealogies, which need not have perfect relationships with species limits and phylogenies. We used a multilocus gene tree approach to elucidate the relationships between four endangered Central American iguanas. We found support for the proposition that the described species taxa correspond to distinct evolutionary lineages warranting individual protection. We combined gene trees to estimate a phylogeny using Bayesian Estimation of Species Trees (BEST), minimizing deep coalescence, Species Trees from Average Ranks (STAR), and traditional concatenation. The estimate from concatenation conflicted with the other methods, likely owing to the disproportionate effect of mtDNA on concatenated analyses. This illustrates the importance of appropriate treatment of multilocus sequence data in phylogenetics. Our results indicate that these species have gone through recent and rapid speciation, resulting in four closely related narrow-range endemics.  相似文献   

6.
Numerous simulation studies have investigated the accuracy of phylogenetic inference of gene trees under maximum parsimony, maximum likelihood, and Bayesian techniques. The relative accuracy of species tree inference methods under simulation has received less study. The number of analytical techniques available for inferring species trees is increasing rapidly, and in this paper, we compare the performance of several species tree inference techniques at estimating recent species divergences using computer simulation. Simulating gene trees within species trees of different shapes and with varying tree lengths (T) and population sizes (), and evolving sequences on those gene trees, allows us to determine how phylogenetic accuracy changes in relation to different levels of deep coalescence and phylogenetic signal. When the probability of discordance between the gene trees and the species tree is high (i.e., T is small and/or is large), Bayesian species tree inference using the multispecies coalescent (BEST) outperforms other methods. The performance of all methods improves as the total length of the species tree is increased, which reflects the combined benefits of decreasing the probability of discordance between species trees and gene trees and gaining more accurate estimates for gene trees. Decreasing the probability of deep coalescences by reducing also leads to accuracy gains for most methods. Increasing the number of loci from 10 to 100 improves accuracy under difficult demographic scenarios (i.e., coalescent units ≤ 4N(e)), but 10 loci are adequate for estimating the correct species tree in cases where deep coalescence is limited or absent. In general, the correlation between the phylogenetic accuracy and the posterior probability values obtained from BEST is high, although posterior probabilities are overestimated when the prior distribution for is misspecified.  相似文献   

7.
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18 mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate.  相似文献   

8.
Genome-scale sequence data have become increasingly available in the phylogenetic studies for understanding the evolutionary histories of species. However, it is challenging to develop probabilistic models to account for heterogeneity of phylogenomic data. The multispecies coalescent model describes gene trees as independent random variables generated from a coalescence process occurring along the lineages of the species tree. Since the multispecies coalescent model allows gene trees to vary across genes, coalescent-based methods have been popularly used to account for heterogeneous gene trees in phylogenomic data analysis. In this paper, we summarize and evaluate the performance of coalescent-based methods for estimating species trees from genome-scale sequence data. We investigate the effects of deep coalescence and mutation on the performance of species tree estimation methods. We found that the coalescent-based methods perform well in estimating species trees for a large number of genes, regardless of the degree of deep coalescence and mutation. The performance of the coalescent methods is negatively correlated with the lengths of internal branches of the species tree.  相似文献   

9.
Liu L  Yu L 《Systematic biology》2011,60(5):661-667
In this study, we develop a distance method for inferring unrooted species trees from a collection of unrooted gene trees. The species tree is estimated by the neighbor joining (NJ) tree built from a distance matrix in which the distance between two species is defined as the average number of internodes between two species across gene trees, that is, average gene-tree internode distance. The distance method is named NJ(st) to distinguish it from the original NJ method. Under the coalescent model, we show that if gene trees are known or estimated correctly, the NJ(st) method is statistically consistent in estimating unrooted species trees. The simulation results suggest that NJ(st) and STAR (another coalescence-based method for inferring species trees) perform almost equally well in estimating topologies of species trees, whereas the Bayesian coalescence-based method, BEST, outperforms both NJ(st) and STAR. Unlike BEST and STAR, the NJ(st) method can take unrooted gene trees to infer species trees without using an outgroup. In addition, the NJ(st) method can handle missing data and is thus useful in phylogenomic studies in which data sets often contain missing loci for some individuals.  相似文献   

10.
We explored the efficacy of species tree methods at the family level in birds, using the Australo-Papuan Fairy-wrens (Passeriformes: Maluridae) as a model system. Fairy-wrens of the genus Malurus are known for high intensities of sexual selection, resulting in some cases in rapid speciation. This history suggests that incomplete lineage sorting (ILS) of neutrally evolving loci could be substantial, a situation that could compromise traditional methods of combining loci in phylogenetic analysis. Using 18 molecular markers (5 anonymous loci, 7 exons, 5 introns, and 1 mitochondrial DNA locus), we show that gene tree monophyly across species could be rejected for 16 of 18 loci, suggesting substantial ILS at the family level in these birds. Using the software Concaterpillar, we also detect three statistically distinct clusters of gene trees among the 18 loci. Despite substantial variation in gene trees, species trees constructed using four different species tree estimation methods (BEST, BUCKy, and STAR) were generally well supported and similar to each other and to the concatenation tree, with a few mild discordances at nodes that could be explained by rapid and recent speciation events. By contrast, minimizing deep coalescences produced a species tree that was topologically more divergent from those of the other methods as measured by multidimensional scaling of trees. Additionally, gene and species trees were topologically more similar in the BEST analysis, presumably because of the species tree prior employed in BEST which appropriately assumes that gene trees are correlated with each other and with the species tree. Among the 18 loci, we also discovered 102 independent indel markers, which also proved phylogenetically informative, primarily among genera, and displayed a ~4-fold bias towards deletions. As suggested in earlier work, the grasswrens (Amytornis) are sister to the rest of the family and the emu-wrens (Stipiturus) are sister to fairy-wrens (Malurus, Clytomyias). Our study shows that ILS is common at the family level in birds yet, despite this, species tree methods converge on broadly similar results for this family.  相似文献   

11.
In this study, we explore the long‐standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well‐studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent‐based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black‐capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa.  相似文献   

12.
Gene trees will often differ from the true species history, the species tree, as a result of processes such as incomplete lineage sorting. New methods such as Bayesian Estimation of the Species Tree (BEST) use the multispecies coalescent to model lineage sorting, and directly infer the species tree from multilocus DNA sequence data. The Sulidae (Aves: Pelecaniformes) is a family of ten booby and gannet species with a global distribution. We sequenced five nuclear intron loci and one mitochondrial locus to estimate a species tree for the Sulidae using both BEST and by concatenating nuclear loci. We also used fossil calibrated strict and relaxed molecular clocks in BEAST to estimate divergence times for major nodes in the sulid phylogeny. Individual gene trees showed little phylogenetic conflict but varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. On the other hand, both the BEST and concatenated species trees were highly resolved, strongly supported, and topologically consistent with each other. The three sulid genera (Morus, Sula, Papasula) were monophyletic and the relationships within genera were mostly consistent with both a previously estimated mtDNA gene tree and the mtDNA gene tree estimated here. However, our species trees conflicted with the mtDNA gene trees in the relationships among the three genera. Most notably, we find that the endemic and endangered Abbott's booby (Papasula abbotti) is likely basal to all other members of the Sulidae and diverged from them approximately 22 million years ago.  相似文献   

13.
The phylogeny of the flycatcher genus Anairetes was previously inferred using short fragments of mitochondrial DNA and parsimony and distance-based methods. The resulting topology spurred taxonomic revision and influenced understanding of Andean biogeography. More than a decade later, we revisit the phylogeny of Anairetes tit-tyrants using more mtDNA characters, seven unlinked loci (three mitochondrial genes, six nuclear loci), more closely related outgroup taxa, partitioned Bayesian analyses, and two coalescent species-tree approaches (Bayesian estimation of species trees, BEST; Bayesian evolutionary analysis by sampling trees, (*)BEAST). Of these improvements in data and analyses, the fourfold increase in mtDNA characters was both necessary and sufficient to incur a major shift in the topology and near-complete resolution. The species-tree analyses, while theoretically preferable to concatenation or single gene approaches, yielded topologies that were compatible with mtDNA but with weaker statistical resolution at nodes. The previous results that had led to taxonomic and biogeographic reappraisal were refuted, and the current results support the resurrection of the genus Uromyias as the sister clade to Anairetes. The sister relationship between these two genera corresponds to an ecological dichotomy between a depauperate humid cloud forest clade and a diverse dry-tolerant clade that has diversified along the latitudinal axis of the Andes. The species-tree results and the concatenation results each reaffirm the primacy of mtDNA to provide phylogenetic signal for avian phylogenies at the species and subspecies level. This is due in part to the abundance of informative characters in mtDNA, and in part to its lower effective population size that causes it to more faithfully track the species tree.  相似文献   

14.
Understanding the mechanism(s) that favour cooperation among individuals competing for the same resources provides direct insights into the evolution of grouping behaviour. In a hybrid zone between golden-/yellow-collared (Manacus vitellinus) and white-collared (Manacus candei) manakins, males form aggregations composed of white and yellow males solely to attract females ('mixed leks'). Previous work shows that yellow males in these mixed leks experience a clear mating advantage over white males, resulting in the preferential introgression of yellow plumage allele(s) into the white species. However, the yellow male mating advantage only occurs in mixed leks with high frequencies of yellow males, and only a few of these males probably mate. Hence, it remains unclear why unsuccessful males join leks. Here, we used microsatellite markers to estimate pairwise relatedness among males within and between leks to test whether indirect genetic benefits of helping kin ('kin selection') can promote grouping. We found that yellow males are significantly more related to each other within than between leks, while relatedness among white males did not differ within and between leks. This suggests that yellow males may indirectly enhance their own reproductive success by preferentially lekking with relatives because yellow plumage is under positive frequency-dependent selection (positive FDS). Our results are consistent with the hypothesis that kin selection may promote grouping and facilitate positive FDS for yellow males, mediating the movement of yellow plumage across this hybrid zone.  相似文献   

15.
An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree.  相似文献   

16.
The males of the Golden-collared manakin ( Manacus vitellinus ), a passerine bird of the Neotropical region, perform elaborate courtship displays that are among the most spectacular in the animal kingdom. During a 7-mo long breeding season, male manakins aggregate in leks of up to 12 individuals, and each male clears a small 'court' on the forest floor where he spends several hours per day performing his displays either with or without the presence of a female. Like males of other manakin species, males of M. vitellinus produce loud mechanical sounds with their wings during the displays. The elaborate displays of the manakins are thought to be the result of sexual selection, which is particularly intense in lekking species in which females choose their mate mainly on the basis of behavioural and morphological features. However, we know little about differences in display between male manakins which may be related to individual differences in reproductive success. A quantitative, detailed analysis of the courtship displays has been difficult because the birds' movements are too fast to be studied with standard video recording techniques. For the first time, we recorded the displays of male Golden-collared manakins in the forest of Panama with a high-speed camera that allows a time resolution 5–40 times higher than that of a standard video camera. We found that several elements of the displays differed significantly between individuals. In addition, the slow-motion analysis revealed the features of the displays that had not been described in previous studies. Individually different features of the displays may form the basis for female choice and will allow testing hypotheses about the evolution of the manakin displays by sexual selection and their importance for speciation mechanisms in the genus Manacus .  相似文献   

17.

Background  

Dating of population divergence is critical in understanding speciation and in evaluating the evolutionary significance of genetic lineages, upon which identification of conservation and management units should be based. In this study we used a multilocus approach and the Isolation-Migration model based on coalescence theory to estimate the time of divergence of the Spanish and Eastern imperial eagle sister species. This model enables estimation of population sizes at split, and inference of gene flow after divergence.  相似文献   

18.
The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The concatenated five gene phylogenetic analyses did not support the overall separation and monophyly of clades associated with different host species, although some clades did show specific host associations, possibly due to localized host availability, rather than host specificity. Our results provide a framework for assessing whether distinct lineages represent cryptic species, and for examining parasitoid-host evolution and compatibility more generally. Given the limitations of morphological based identification for members of this complex, molecular identification is recommended prior to any biological control introductions.  相似文献   

19.
When gene copies are sampled from various species, the resulting gene tree might disagree with the containing species tree. The primary causes of gene tree and species tree discord include incomplete lineage sorting, horizontal gene transfer, and gene duplication and loss. Each of these events yields a different parsimony criterion for inferring the (containing) species tree from gene trees. With incomplete lineage sorting, species tree inference is to find the tree minimizing extra gene lineages that had to coexist along species lineages; with gene duplication, it becomes to find the tree minimizing gene duplications and/or losses. In this paper, we present the following results: 1) The deep coalescence cost is equal to the number of gene losses minus two times the gene duplication cost in the reconciliation of a uniquely leaf labeled gene tree and a species tree. The deep coalescence cost can be computed in linear time for any arbitrary gene tree and species tree. 2) The deep coalescence cost is always not less than the gene duplication cost in the reconciliation of an arbitrary gene tree and a species tree. 3) Species tree inference by minimizing deep coalescence events is NP-hard.  相似文献   

20.
The angiosperm Apiaceae tribe Scandiceae includes four major clades—subtribes Daucinae, Ferulinae, Torilidinae, and Scandicinae—that originated ca. 20 Mya. Although all four subtribes are highly supported in molecular analyses, and morphological data indicate a sister relationship between Daucinae and Torilidinae, their branching order has not been resolved using standard Sanger multilocus data. Therefore, in this study, we test the utility of genomic RAD seq data in resolving deep phylogenetic relationships (up to 20 Mya) in Apiaceae subfamily Apioideae, with special emphasis on tribe Scandiceae using 12 representative species. We used two bioinformatic pipelines, pyRAD and RADIS (based on STACKS), to assemble RAD seq data and we tested the influence of various combinations of parameters on the robustness of the inferred tree topologies. Although different data processing approaches produced alignments with various amounts of missing data, they converged to two well‐supported topologies, irrespective of the phylogenetic method applied. Highly supported trees showed Scandicinae as sister to all other clades and indicated that Daucinae and Torilidinae are sister groups, thus confirming the relationship inferred from morphology. We conclude that the RAD seq method can be successfully used to resolve deep relationships formed 20 Mya within Apiaceae. We provide recommendations for parameter settings in RADIS and pyRAD for the analysis of taxa that have accumulated considerable genomic divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号