首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Rapid formation of high-Ca2+ perimitochondrial cytoplasmic microdomains has been shown to evoke mitochondrial Ca2+ signal and activate mitochondrial dehydrogenases, however, the significance of submicromolar cytoplasmic Ca2+ concentrations in the control of mitochondrial metabolism has not been sufficiently elucidated. Here we studied the mitochondrial response to application of Ca2+ at buffered concentrations in permeabilized rat adrenal glomerulosa cells, in an insulin-producing cell line (INS-1/EK-3) and in an osteosarcoma cell line (143BmA-13). Mitochondrial Ca2+ concentration was measured with the fluorescent dye rhod-2 and, using an in situ calibration method, with the mitochondrially targeted luminescent protein mt-aequorin. In both endocrine cell types, mitochondrial Ca2+ concentration increased in response to elevated cytoplasmic Ca2+ concentration (between 60 and 740 nM) and an increase in mitochondrial Ca2+ concentration could be revealed already at a cytoplasmic Ca2+ concentration step from 60-140 nM. Similar responses were observed in the osteosarcoma cell line, although a clearcut response was first observed at 280 nM extramitochondrial Ca2+ only. As examined in glomerulosa cells, graded increases in cytoplasmic Ca2+ concentration were associated with graded increases in the reduction of mitochondrial pyridine nucleotides, consistent with Ca2+-dependent activation of mitochondrial dehydrogenases. Our data indicate that in addition to the recognized role of high-Ca2+ cytoplasmic microdomains, also small Ca2+ signals may influence mitochondrial metabolism.  相似文献   

3.
Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.  相似文献   

4.
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring.  相似文献   

5.
The effects of cyanide on Ca2+ exchange in isolated ventricular myocytes and on the intracellular concentrations of Ca2+, Na+ and H+ have been investigated to assess the contribution that mitochondria might play in cellular Ca2+ metabolism. Ionic levels were measured with ion-selective electrodes. KCN (2.5 mM) inhibited a component of Ca2+ exchange in myocytes that could be attributed to mitochondrial exchange, but was without effect on non-mitochondrial Ca2+ exchange. NaCN (2.5 mM) caused a transient reduction of [H+]i, [Na+]i and [Ca2+]i when applied to the superfusate bathing ventricular trabeculae or papillary muscles. The transient changes of [Na+]i were accentuated when the preparation was exposed to a solution which would be expected to increase the cellular calcium content. The reduction of [Na+]i which accompanies a reduction of the extracellular sodium concentration, [Na]o, was attenuated in the presence of NaCN, but the intracellular acidosis resulting from a reduction of [Na]o was unaffected by NaCN. A small, but significant, rise of [Ca2+]i accompanied a reduction of [Na]o but only when NaCN was present in the superfusate. It is concluded that cyanide ions have a reasonably specific action on cardiac cellular ionic metabolism. Its primary action is to prevent mitochondrial Ca2+ sequestration. It is postulated that a Na+/H+ exchange, possibly at the sarcolemma, could account for some of the changes to sarcoplasmic ionic levels observed. In a solution of low [Na]o, it is concluded that mitochondria could sequester at least 30% of the calcium accumulated by the cell even though the sarcoplasmic [Ca2+] does not exceed 0.3 microM.  相似文献   

6.
The alterations of mitochondrial membrane potential during the development of irreversible cell damage were investigated by measuring rhodamine-123 uptake and distribution in primary cultures as well as in suspensions of rat hepatocytes exposed to different toxic agents. Direct and indirect mechanisms of mitochondrial damage have been identified and a role for Ca2+ in the development of this type of injury by selected compounds was assessed by using extracellular as well as intracellular Ca2+ chelators. In addition, mitochondrial uncoupling by carbonylcyanide-m-chloro-phenylhydrazone (CCCP) resulted in a marked depletion of cellular ATP that was followed by an increase in cytosolic Ca2+ concentration, immediately preceding cell death. These results support the existence of a close relationship linking, in a sort of reverberating circuit, the occurrence of mitochondrial dysfunction and the alterations in cellular Ca2+ homeostasis during hepatocyte injury.  相似文献   

7.
8.
The Ca(2+)-sensitive dehydrogenases of the mitochondrial matrix are, so far, the only known effectors to allow Ca2+ signals to couple the activation of plasma membrane receptors to the stimulation of aerobic metabolism. In this study, we demonstrate a novel mechanism, based on Ca(2+)-sensitive metabolite carriers of the inner membrane. We expressed in Chinese hamster ovary cells aralar1 and citrin, aspartate/glutamate exchangers that have Ca(2+)-binding sites in their sequence, and measured mitochondrial Ca2+ and ATP levels as well as cytosolic Ca2+ concentration with targeted recombinant probes. The increase in mitochondrial ATP levels caused by cell stimulation with Ca(2+)-mobilizing agonists was markedly larger in cells expressing aralar and citrin (but not truncated mutants lacking the Ca(2+)-binding site) than in control cells. Conversely, the cytosolic and the mitochondrial Ca2+ signals were the same in control cells and cells expressing the different aralar1 and citrin variants, thus ruling out an indirect effect through the Ca(2+)-sensitive dehydrogenases. Together, these data show that the decoding of Ca2+ signals in mitochondria depends on the coordinate activity of mitochondrial enzymes and carriers, which may thus represent useful pharmacological targets in this process of major pathophysiological interest.  相似文献   

9.
The concerted action of inositol 1,4,5-trisphosphate (IP3) and Ca2+ on the IP3 receptor Ca2+ release channel (IP3R) is a fundamental step in the generation of cytosolic Ca2+ oscillations and waves, which underlie Ca2+ signaling in many cells. Mitochondria appear in close association with regions of endoplasmic reticulum (ER) enriched in IP3R and are particularly responsive to IP3-induced increases of cytosolic Ca2+ ([Ca2+]c). To determine whether feedback regulation of the IP3R by released Ca2+ is modulated by mitochondrial Ca2+ uptake, the interactions between ER and mitochondrial Ca2+ pools were examined by fluorescence imaging of compartmentalized Ca2+ indicators in permeabilized hepatocytes. IP3 decreased luminal ER Ca2+ ([Ca2+]ER), and this was paralleled by an increase in mitochondrial matrix Ca2+ ([Ca2+]m) and activation of Ca2+-sensitive mitochondrial metabolism. Remarkably, the decrease in [Ca2+]ER evoked by submaximal IP3 was enhanced when mitochondrial Ca2+ uptake was blocked with ruthenium red or uncoupler. Moreover, subcellular regions that were relatively deficient in mitochondria demonstrated greater sensitivity to IP3 than regions of the cell with a high density of mitochondria. These data demonstrate that Ca2+ uptake by the mitochondria suppresses the local positive feedback effects of Ca2+ on the IP3R, giving rise to subcellular heterogeneity in IP3 sensitivity and IP3R excitability. Thus, mitochondria can play an important role in setting the threshold for activation and establishing the subcellular pattern of IP3-dependent [Ca2+]c signaling.  相似文献   

10.
Transmission of cytosolic [Ca2+] ([Ca2+]c) oscillations into the mitochondrial matrix is thought to be supported by local calcium control between IP3 receptor Ca2+ channels (IP3R) and mitochondria, but study of the coupling mechanisms has been difficult. We established a permeabilized cell model in which the Ca2+ coupling between endoplasmic reticulum (ER) and mitochondria is retained, and mitochondrial [Ca2+] ([Ca2+]m) can be monitored by fluorescence imaging. We demonstrate that maximal activation of mitochondrial Ca2+ uptake is evoked by IP3-induced perimitochondrial [Ca2+] elevations, which appear to reach values >20-fold higher than the global increases of [Ca2+]c. Incremental doses of IP3 elicited [Ca2+]m elevations that followed the quantal pattern of Ca2+ mobilization, even at the level of individual mitochondria. In contrast, gradual increases of IP3 evoked relatively small [Ca2+]m responses despite eliciting similar [Ca2+]c increases. We conclude that each mitochondrial Ca2+ uptake site faces multiple IP3R, a concurrent activation of which is required for optimal activation of mitochondrial Ca2+ uptake. This architecture explains why calcium oscillations evoked by synchronized periodic activation of IP3R are particularly effective in establishing dynamic control over mitochondrial metabolism. Furthermore, our data reveal fundamental functional similarities between ER-mitochondrial Ca2+ coupling and synaptic transmission.  相似文献   

11.
Interferon-gamma (IFN-gamma) at a concentration of 50 U/ml increased internal Ca2+ in the monocyte-like cell line U937 by about 100% within 3 min of addition, as determined by indo-1 fluorescence. This IFN-gamma-induced increase was reduced to 30-40% of basal (Ca2+) by the addition of diltiazem (1 microM) or incubation in Ca2+-free buffer. Ai crude membrane preparation obtained by differential centrifugation of sonicated U937 cells possessed Ca2+-ATPase activity (10 nmol ATP hydrolyzed/min/mg protein at 30 C) and sequestered Ca2+ to a level of 8 nmol/mg protein in 30 min. Addition of inositol trisphophate (IP3) (10 microM) after accumulation of Ca2+ resulted in release of a portion of the sequestered Ca2+ within 30 s, which was then resequestered. Although mitochondrial contamination was indicated by partial inhibition of Ca2+ uptake by oligomycin A, this mitochondrial inhibitor had no effect on the IP3-induced Ca2+ release. These results suggest that the increase in U937 cell cytoplasmic Ca2+ induced by IFN-gamma results from both intracellular redistribution of Ca2+, probably via polyphosphoinositide metabolism, and the entry of extracellular Ca2+ through slow channels.  相似文献   

12.
Changes in mitochondrial integrity, reactive oxygen species release and Ca2+ handling are proposed to be involved in the pathogenesis of many neurological disorders including methylmalonic acidaemia and Huntington's disease, which exhibit partial mitochondrial respiratory inhibition. In this report, we studied the mechanisms by which the respiratory chain complex II inhibitors malonate, methylmalonate and 3-nitropropionate affect rat brain mitochondrial function and neuronal survival. All three compounds, at concentrations which inhibit respiration by 50%, induced mitochondrial inner membrane permeabilization when in the presence of micromolar Ca2+ concentrations. ADP, cyclosporin A and catalase prevented or delayed this effect, indicating it is mediated by reactive oxygen species and mitochondrial permeability transition (PT). PT induced by malonate was also present in mitochondria isolated from liver and kidney, but required more significant respiratory inhibition. In brain, PT promoted by complex II inhibition was stimulated by increasing Ca2+ cycling and absent when mitochondria were pre-loaded with Ca2+ or when Ca2+ uptake was prevented. In addition to isolated mitochondria, we determined the effect of methylmalonate on cultured PC12 cells and freshly prepared rat brain slices. Methylmalonate promoted cell death in striatal slices and PC12 cells, in a manner attenuated by cyclosporin A and bongkrekate, and unrelated to impairment of energy metabolism. We propose that under conditions in which mitochondrial complex II is partially inhibited in the CNS, neuronal cell death involves the induction of PT.  相似文献   

13.
Mitochondria in nerve terminals are subjected to extensive Ca2+ fluxes and high energy demands, but the extent to which the synaptic mitochondria buffer Ca2+ is unclear. In this study, we identified a difference in the Ca2+ clearance ability of nonsynaptic versus synaptic mitochondrial populations enriched from rat cerebral cortex. Mitochondria were isolated using Percoll discontinuous gradients in combination with high pressure nitrogen cell disruption. Mitochondria in the nonsynaptic fraction originate from neurons and other cell types including glia, whereas mitochondria enriched from a synaptosomal fraction are predominantly neuronal and presynaptic in origin. There were no differences in respiration or initial Ca2+ loads between nonsynaptic and synaptic mitochondrial populations. Following both bolus and infusion Ca2+ addition, nonsynaptic mitochondria were able to accumulate significantly more exogenously added Ca2+ than the synaptic mitochondria before undergoing mitochondrial permeability transition, observed as a loss in mitochondrial membrane potential and decreased Ca2+ uptake. The limited ability of synaptic mitochondria to accumulate Ca2+ could result from several factors including a primary function of ATP production to support the high energy demand of presynaptic terminals, their relative isolation in comparison with the threads or clusters of mitochondria found in the soma of neurons and glia, or the older age and increased exposure to oxidative damage of synaptic versus nonsynaptic mitochondria. By more readily undergoing permeability transition, synaptic mitochondria may initiate neuron death in response to insults that elevate synaptic levels of intracellular Ca2+, consistent with the early degeneration of distal axon segments in neurodegenerative disorders.  相似文献   

14.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

15.
The relative importance of heart mitochondria in regulating intracellular [Ca2+] in cardiac muscle is controversial. In a new approach to the question, we have measured the energy-linked 45Ca uptake of an unusual myocardial tissue preparation in which the cells appear to be intact yet the sarcolemmae are highly permeable to exogenous solutes. Inhibitors of mitochondrial energy metabolism were used to estimate the mitochondrial contribution to rate and extent of total cell uptake. At 6.6μM Ca, which is close to the probable intracellular [Ca] range, inhibitors of mitochondrial energy metabolism did not diminish initial rates of 45Ca uptake by myocardial fragments, if ATP was present to drive Ca2+ sequestration by the sarcoplasmic reticulum. The ultimate extent of uptake was reduced somewhat, however. Similar uptake profiles were obtained in the presence of carbonyl cyanide m-chlorophenyl-hydrazone, CN?, and atractyloside, each of which acts at a different locus to inhibit mitochondrial Ca2+ transport. These data suggest that the mitochondria cannot control beat-to-beat [Ca2+] oscillations, because at μM Ca concentrations, the Ca2+ uptake rate of mitochondria insitu is slow in comparison to the extra-mitochondrial (sarcoplasmic reticulum) uptake rate.  相似文献   

16.
We have developed a digital image processing technique based on highpass filtering of microfluorimetric images for selective transmission of fine image details corresponding to mitochondria. This technique enabled the detection of the mitochondrial calcium signals with high selectivity, simultaneously with the cytosolic calcium signal. The validity of this technique was supported in primary cultures of rat brain capillary endothelial cells loaded with X-rhod-1 by the results that (i) inhibition of the mitochondrial Ca2+ uptake by discharging the mitochondrial membrane potential selectively abolished the transient of the highpass filtered signal evoked by ATP, and (ii) CGP-37157, a selective blocker of the mitochondrial Na+/Ca2+ exchanger, increased the peak amplitude of highpass filtered (mitochondrial) Ca2+ transients and caused a sustained plateau. The highpass filtering technique enabled the analysis of the mitochondrial Ca2+ transients in high temporal resolution. We found a uniform and monophasic rise of [Ca2+] in the mitochondrial population of the cell, following the cytosolic [Ca2+] with a delay at onset and peak. The introduced highpass filtering technique is a powerful tool in the high spatial and temporal resolution analysis of mitochondrial calcium transients, and it could be especially important in specimens where genetically targeted probes fail.  相似文献   

17.
Mitochondria have been found to sequester and release Ca2+ during cell stimulation with inositol 1,4,5-triphosphate-generating agonists, thereby generating subplasmalemmal microdomains of low Ca2+ that sustain activity of capacitative Ca2+ entry (CCE). Procedures that prevent mitochondrial Ca2+ uptake inhibit local Ca2+ buffering and CCE, but it is not clear whether Ca2+ has to transit through or remains trapped in the mitochondria. Thus, we analyzed the contribution of mitochondrial Ca2+ efflux on the ability of mitochondria to buffer subplasmalemmal Ca2+, to maintain CCE, and to facilitate endoplasmic reticulum (ER) refilling in endothelial cells. Upon the addition of histamine, the initial mitochondrial Ca2+ transient, monitored with ratio-metric-pericam-mitochondria, was largely independent of extracellular Ca2+. However, subsequent removal of extracellular Ca2+ produced a reversible decrease in [Ca2+]mito, indicating that Ca2+ was continuously taken up and released by mitochondria, although [Ca2+]mito had returned to basal levels. Accordingly, inhibition of the mitochondrial Na+/Ca2+ exchanger with CGP 37157 increased [Ca2+]mito and abolished the ability of mitochondria to buffer subplasmalemmal Ca2+, resulting in an increased activity of BKCa channels and a decrease in CCE. Hence, CGP 37157 also reversibly inhibited ER refilling during cell stimulation. These effects of CGP 37157 were mimicked if mitochondrial Ca2+ uptake was prevented with oligomycin/antimycin A. Thus, during cell stimulation a continuous Ca2+ flux through mitochondria underlies the ability of mitochondria to generate subplasmalemmal microdomains of low Ca2+, to facilitate CCE, and to relay Ca2+ from the plasma membrane to the ER.  相似文献   

18.
The role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers. Cytosolic and mitochondrial Ca2+ transients were recorded with digital photometry and confocal microscopy using fura-2 and mag-rhod-2, respectively. In the presence of 0.5 mM slow Ca2+ buffer (EGTA (ethylene glycolbis(2-aminoethylether)-N,N,N',N'-tetraacetic acid)), application of caffeine induced a synchronized increase in both cytosolic and mitochondrial [Ca2+]. 5 mM fast Ca2+ buffer (BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)) nearly eliminated caffeine-induced increases in [Ca2+]c but only partially decreased the amplitude of mitochondrial Ca2+ transients. Confocal imaging revealed that in EGTA, almost all mitochondria picked up Ca2+ released from the SR by caffeine, whereas only about 70% of mitochondria did so in BAPTA. Taken together, these results indicated that a subpopulation of mitochondria is in close functional and presumably structural proximity to the SR, giving rise to subcellular microdomains in which Ca2+ has preferential access to the juxtaposed organelles.  相似文献   

19.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

20.
In this study the Ca2+ ionophore, A23187, was used to determine the effects of disrupted Ca2+ homeostasis on cellular thiols. Isolated rat hepatocytes were incubated with varying concentrations of extracellular Ca2+ and A23187 to induce accumulation or loss of cellular Ca2+. These treatments resulted in loss of mitochondrial and cytosolic glutathione (GSH), loss of protein-thiols, and cell injury. This injury was dependent on the concentrations of ionophore and extracellular Ca2+. A correlation was found between cell injury and the loss of mitochondrial GSH, while the loss of cytosolic glutathione preceded both these events. The time course of protein-thiol loss appeared secondary to the loss of non-protein thiols. In the absence of extracellular Ca2+, the antioxidants alpha-tocopherol and diphenyl-p-phenylenediamine both totally prevented A23187-induced cell injury and loss of mitochondrial GSH, and thus protected the cells from the effects of mobilization of intracellular Ca2+. In the presence of extracellular Ca2+, cell injury as well as the loss of mitochondrial GSH were only partially prevented by antioxidant treatment. The mitochondrial Ca2+ channel blocker, ruthenium red, protected hepatocytes from A23187-induced injury in the absence of extracellular Ca2+. Leupeptin, an inhibitor of Ca2+-activated proteases, and dibucaine, a phospholipase inhibitor, did not affect cytotoxicity. Our results indicate that the level of mitochondrial GSH may be important for cell survival during ionophore-induced perturbation of cellular Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号