首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prominent roles for odorant receptor coding sequences in allelic exclusion   总被引:4,自引:0,他引:4  
Nguyen MQ  Zhou Z  Marks CA  Ryba NJ  Belluscio L 《Cell》2007,131(5):1009-1017
Mammalian odorant receptors (ORs) are crucial for establishing the functional organization of the olfactory system, but the mechanisms controlling their expression remain largely unexplained. Here, we utilized a transgenic approach to explore OR gene regulation. We determined that although olfactory sensory neurons (OSNs) are capable of supporting expression of multiple functional ORs, several levels of control ensure that each neuron normally expresses only a single odorant receptor. Surprisingly, this regulation extends beyond endogenous ORs even preventing expression of transgenes consisting of OR-coding sequences driven by synthetic promoters. Thus, part of the intrinsic feedback system must rely on elements present in the OR-coding sequence. Notably, by expressing the same transgenic ORs precociously in immature neurons, we have overcome this suppression and established a generic method to express any OR in approximately 90% of OSNs. These results provide important insights into the hierarchy of OR gene expression and the vital role of the OR-coding sequence in this regulation.  相似文献   

2.
主要嗅觉表皮组织(MOE)是哺乳动物感知气味分子的重要器官,气味诱导是嗅觉受体神经元(ORN)活动的起点,嗅觉受体(OR)结合气味分子后通过环腺苷酸(cAMP)信号通路向下游传递信号。腺苷酸环化酶3(AC3)是此通路中的重要分子。为了探讨AC3缺失对小鼠MOE内ORs基因表达的影响,本文以AC3敲除型小鼠(AC3-/-)和野生型小鼠(AC3+/+)为材料,采用荧光定量PCR(qRT-PCR)、荧光原位杂交(FISH)技术分析了部分ORs基因及与其相关因子在MOE中的表达。qRT-PCR表明,3月龄AC3-/-小鼠MOE中嗅觉受体 Olfr15、Olfr16、Olfr533、Olfr536、Olfr1507和Olfr642的表达量均显著下降。出生后PND7、PND30和PND90 三个不同发育时期的AC3-/-小鼠MOE原位杂交显示,嗅觉受体Olfr15、Olfr536和Olfr1507表达的细胞数目均减少。进一步qRT-PCR分析发现,3月龄AC3-/-小鼠嗅觉受体相关因子Rtp1、Rtp2、Reep1、Lhx2、Emx2和Ric-8b的表达也均发生显著下调。由此推测,AC3缺失导致的ORs及其相关因子的表达下调可能是嗅觉行为障碍的原因之一。  相似文献   

3.
4.
We cloned two homeobox genes, Emx1 and Emx2, related to empty spiracles, a gene expressed in very anterior body regions during early Drosophila embryogenesis, and studied their expression in mouse embryos. Emx1 expression is detectable from day 9.5 of gestation whereas Emx2 appears to be already expressed in 8.5 day embryos. Both genes are expressed in the presumptive cerebral cortex and olfactory bulbs. Emx1 is expressed exclusively there, whereas Emx2 is also expressed in some neuroectodermal areas in embryonic head including olfactory placodes in earlier stages and olfactory epithelia later in development.  相似文献   

5.
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.  相似文献   

6.
The canine olfactory subgenome   总被引:10,自引:0,他引:10  
We identified 971 olfactory receptor (OR) genes in the dog genome, estimated to constitute approximately 80% of the canine OR repertoire. This was achieved by directed genomic DNA cloning of olfactory sequence tags as well as by mining the Celera canine genome sequences. The dog OR subgenome is estimated to have 12% pseudogenes, suggesting a functional repertoire similar to that of mouse and considerably larger than for humans. No novel OR families were discovered, but as many as 34 gene subfamilies were unique to the dog. "Fish-like" Class I ancient ORs constituted 18% of the repertoire, significantly more than in human and mouse. A set of 122 dog-human-mouse ortholog triplets was identified, with a relatively high fraction of Class I ORs. The elucidation of a large portion of the canine olfactory receptor gene superfamily, with some dog-specific attributes, may help us understand the unique chemosensory capacities of this species.  相似文献   

7.
Amano T  Gascuel J 《PloS one》2012,7(4):e33922
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.  相似文献   

8.
Odorant receptors (ORs) provide the core determinant of identity for axons of olfactory sensory neurons (OSNs) to coalesce into glomeruli in the olfactory bulb. Here, using gene targeting in mice, we examine how the OR protein determines axonal identity. An OR::GFP fusion protein is present in axons, consistent with a direct function of ORs in axon guidance. When the OR coding region is deleted, we observe OSNs that coexpress other ORs that function in odorant reception and axonal identity. It remains unclear if such coexpression is normally prevented by negative feedback on OR gene choice. A drastic reduction in OR protein level produces axonal coalescence into novel, remote glomeruli. By contrast, chimeric ORs and ORs with minor mutations perturb axon outgrowth. Strikingly, the beta2 adrenergic receptor can substitute for an OR in glomerular formation when expressed from an OR locus. Thus, ORs have not evolved a unique function in axon guidance.  相似文献   

9.
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.  相似文献   

10.
11.
12.
13.
14.
15.
16.
NaNa Kang  JaeHyung Koo 《BMB reports》2012,45(11):612-622
Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions. [BMB Reports 2012; 45(11): 612-622]  相似文献   

17.
The ability to restrict gene expression or disruption to specific regions of the brain would enhance understanding of the molecular basis for brain development and function. For this purpose, brain region-restricted promoters are essential. Here we report the isolation of a DNA fragment containing the Emx1 gene promoter, which is responsible for dorsal telencephalon-specific expression. The Cre recombinase gene was inserted into a mouse PAC (P1-derived artificial chromosome) Emx1-locus clone (PAC-Emx1#1 clone) and utilized to generate three transgenic mouse lines. In all three lines, especially Tg3, Cre-mediated recombination was highly restricted to Emx1-expressing cell lineages, from embryonic stages to adulthood. Immunohistochemical analyses showed that Cre protein is expressed in the dorsal telencephalon in all three lines in adulthood. Thus, the PAC-Emx1#1 clone contains essentially all regulatory elements necessary for Emx1 gene expression. Our results suggest that Emx1-Cre Tg3 mice and the PAC-Emx1#1 clone constitute powerful tools for dorsal telencephalon-specific gene manipulation.  相似文献   

18.
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) from a large repertoire of clustered OR genes. It has been hypothesized that OR gene regulation may involve stochastic DNA rearrangement, which in lymphocytes requires the recombination activating genes, rag1 and rag2. We have recently demonstrated that rag1 is expressed in zebrafish OSNs. Here we report that rag2, the obligate partner for rag1 function, is also expressed in OSNs and that its expression pattern mimics that of rag1. The onset of rag1 and rag2 expression preceded that of known zebrafish ORs and the number of rag1-positive OSNs corresponded with the number expressing the olfactory cyclic nucleotide-gated cation channel, an OSN marker. Zebrafish OSNs are the first example of concurrent rag expression in a nonlymphoid tissue. The expression of rag1 and rag2 in OSNs adds to the list of similarities between the olfactory and immune systems that includes monoallelic and mutually exclusive gene expression.  相似文献   

19.
Olfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue. Due to limitations in heterologous expression, very few mammal ORs have been characterized, and so far only one is from human origin. Consequently, OR function still remains poorly understood, especially in humans, whose genome encodes a restricted chemosensory repertoire compared with most mammal species. In this study, we have designed cassette baculovirus vectors to coexpress human OR 17-209 or OR 17-210 with either G(alpha olf) or G(alpha16) proteins in Sf9 cells. Each OR was found to be expressed at the cell surface and colocalized with both G(alpha) proteins. Using Ca2+ imaging, we showed that OR 17-209 and OR 17-210 proteins are activated by esters and ketones respectively. Odorant-induced calcium response was increased when ORs were coexpressed with G(alpha16) protein, whereas coexpression with G(alpha olf) abolished calcium signaling. This strategy has been found to overcome most of the limitations encountered when expressing an OR protein and has permitted odorant screening of functional ORs. Our approach could thus be of interest for further expression and ligand assignment of other orphan receptor proteins.  相似文献   

20.
The vertebrate olfactory receptor (OR) subgenome harbors the largest known gene family, which has been expanded by the need to provide recognition capacity for millions of potential odorants. We implemented an automated procedure to identify all OR coding regions from published sequences. This led us to the identification of 831 OR coding regions (including pseudogenes) from 24 vertebrate species. The resulting dataset was subjected to neighbor-joining phylogenetic analysis and classified into 32 distinct families, 14 of which include only genes from tetrapodan species (Class II ORs). We also report here the first identification of OR sequences from a marsupial (koala) and a monotreme (platypus). Analysis of these OR sequences suggests that the ancestral mammal had a small OR repertoire, which expanded independently in all three mammalian subclasses. Classification of ``fish-like' (Class I) ORs indicates that some of these ancient ORs were maintained and even expanded in mammals. A nomenclature system for the OR gene superfamily is proposed, based on a divergence evolutionary model. The nomenclature consists of the root symbol `OR', followed by a family numeral, subfamily letter(s), and a numeral representing the individual gene within the subfamily. For example, OR3A1 is an OR gene of family 3, subfamily A, and OR7E12P is an OR pseudogene of family 7, subfamily E. The symbol is to be preceded by a species indicator. We have assigned the proposed nomenclature symbols for all 330 human OR genes in the database. A WWW tool for automated name assignment is provided. Received: / Accepted:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号