首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the two-hybrid technique we identified a novel protein whose N-terminal 88 amino acids (aa) interact with the C-terminal regulatory domain of the plasma membrane (PM) H+-ATPase from Arabidopsis thaliana (aa 847-949 of isoform AHA1). The corresponding gene has been named Ppi1 for Proton pump interactor 1. The encoded protein is 612 aa long and rich in charged and polar residues, except for the extreme C-terminus, where it presents a hydrophobic stretch of 24 aa. Several genes in the A. thaliana genome and many ESTs from different plant species share significant similarity (50-70% at the aa level over stretches of 200-600 aa) to Ppi1. The PPI1 N-terminus, expressed in bacteria as a fusion protein with either GST or a His-tag, binds the PM H+-ATPase in overlay experiments. The same fusion proteins and the entire coding region fused to GST stimulate H+-ATPase activity. The effect of the His-tagged peptide is synergistic with that of fusicoccin (FC) and of tryptic removal of a C-terminal 10 kDa fragment. The His-tagged peptide binds also the trypsinised H+-ATPase. Altogether these results indicate that PPI1 N-terminus is able to modulate the PM H+-ATPase activity by binding to a site different from the 14-3-3 binding site and is located upstream of the trypsin cleavage site.  相似文献   

2.
Abstract: The effect of cysteine modification with N-ethylmalei-mide (NEM) on the activity of the plasma membrane (PM) H+-ATPase and on its activation state was investigated in PM isolated from aged red beet parenchyma slices. Treatment of PM with increasing concentrations of NEM (0.1–1mM) drastically reduced H+-ATPase activity. The inhibiting effect of PM treatment with NEM was stronger when the H+-ATPase activity was assayed at pH values (7.1–7.2) higher than that optimal for enzyme activity (6.3). If the PM H+-ATPase was activated by proteolytic cleavage of the C-terminal domain or by its displacement by fusicoccin prior to NEM treatment, the inhibitory effect of NEM on the W-ATPase activity became independent of the pH of the assay medium. Moreover, inhibition by NEM of H+-ATPase activity also became independent of the pH of the assay medium if the C-terminal was proteolytically cleaved or displaced by lysophosphatidylcholine after NEM treatment of the PM. Controlled trypsin treatment of NEM-treated PM produced, beside the 90 kDa truncated PM H+-ATPase, fragments of 60 to 30 kDa of the enzyme that were undetectable after trypsin treatment of control PM. These results indicate that PM treatment with NEM modifies the H+-ATPase conformation, exposing trypsin cleavage sites scarcely accessible in control PM and strengthening the autoinhibitory action of the C-terminal domain.  相似文献   

3.
Kamińska J  Tobiasz A  Gniewosz M  Zoładek T 《Gene》2000,242(1-2):133-140
Mutations in the PMA1 gene, encoding plasma membrane H+ -ATPase, were isolated that are able to suppress the temperature sensitivity (ts) phenotype of mdp1 mutations located in RSP5, the ubiquitin-protein ligase gene. The mdp1 mutants were previously found to change the mitochondrial/cytosolic distribution of Mod5p-I, the tRNA modifying enzyme, and to affect fluid phase endocytosis. The data presented reveal that mdp1 mutants are also pH sensitive, and hypersensitive to hygromycin B and paromomycin. The ts phenotype, hygromycin B and paromomycin sensitivity are suppressed by pmal-t, but the pH sensitivity, the effect of mdp1 on Mod5p-I cytoplasmic/mitochondrial localization and endocytosis are not. Characterization of pmal-t revealed the substitution of amino acid G(653)V in the ATP-binding domain of the H+ -ATPase. Our results indicate that Rsp5 ubiquitin-protein ligase may also influence, in addition to protein distribution, the functioning of plasma membrane H+ -ATPase and the response of cells to stress.  相似文献   

4.
运用γ-32P示踪、蛋白激酶和磷酸酶抑制剂药理实验探讨茉莉酸甲酯(MeJA)对质膜H -ATP酶水解活力及磷酸化水平的影响.结果如下:MeJA可促进H -ATP酶水解活力30%;斑蝥素和岗田酸促进了MeJA对质膜H -ATP酶的刺激作用;星形孢菌素和白屈菜红碱削弱了MeJA对质膜H -ATP酶的刺激作用.H -ATP酶活力变化同时,其上的γ-32P标记量发生变化.Ca2 对H -ATP酶水解活力有很大的刺激作用,但对MeJA促进H -ATP酶活力的作用没有进一步的影响.根据这些结果可以得出结论:MeJA刺激质膜H -ATP酶水解活力的变化与H -ATP酶磷酸化水平呈正相关,并且催化这一作用的蛋白激酶可能不依赖于Ca2 ,而蛋白磷酸酶依赖于Ca2 .  相似文献   

5.
6.
以耐冷性不同的两个水稻品种为材料,比较研究了幼苗根系质膜、液泡膜ATP酶对低温(8℃)及高pH(8.0)胁迫的反应。结果表明水稻根细胞质膜和液泡膜上均存在Ca3+-ATP酶,但活性远低于H+-ATP酶。耐冷品种武育粳3号经低温(8℃)处理2d,根系质膜和液泡膜H+-ATP酶、Ca2+-ATP酶活性均明显升高,至冷处理12d,H+-ATP酶、Ca2+-ATP酶活性有所下降,但仍与对照相近;而冷敏感品种汕优63经低温(8℃)处理2d,根系质膜H+-ATP酶活性略有升高,而质膜Ca2+-ATP酶以及液泡膜H+-ATP酶、Ca2+-ATP酶活性已明显下降;至冷处理12d,4种酶活性均明显低于对照。高pH胁迫使质膜和液泡膜H+-ATP酶活性下降,而使Ca2+-ATP酶活性上升。高pH胁迫会加剧低温冷害。结果表明,耐冷品种质膜、液泡膜ATP酶比冷敏感品种对低温胁迫有更强的适应能力。  相似文献   

7.
A large proportion of intracellular Ca2+ in Toxoplasma gondii tachyzoites is stored within acidocalcisomes. These organelles are characterized by their acidic nature and high calcium and polyphosphate (polyP) content. The activity of a Ca2+/H+-ATPase named TgA1 may be important for the accumulation of Ca2+ in these organelles. This enzyme belongs to a group of plasma membrane Ca2+-ATPase (PMCA) that lack a calmodulin-binding domain and have vacuolar localization. To investigate the role of this enzyme, we have generated T. gondii mutants deficient in TgA1 through gene disruption. Proliferation of these mutants decreased dramatically because of deficient cell invasion. In addition, these cells had reduced virulence in a mouse model. Biochemical analysis revealed that the cell polyP content was drastically reduced, and the basal calcium levels were increased and unstable. Microneme secretion under the conditions of stimulation by ionophores was altered. Complementation of null mutants with TgA1 restored most functions. In summary, these results establish a link between TgA1, calcium homeostasis, polyP storage and virulence.  相似文献   

8.
Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+ -ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+ -ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+ -ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+ -ATPase regulation.  相似文献   

9.
PPI1 (proton pump interactor isoform 1) is a novel protein able to interact with the C-terminal autoinhibitory domain of the Arabidopsis thaliana plasma membrane (PM) H+-ATPase. In vitro, PPI1 binds the PM H+-ATPase in a site different from the known 14-3-3 binding site and stimulates its activity. In this study, we analysed the intracellular localisation of PPI1. The intracellular distribution was monitored in A. thaliana cultured cells by immunolocalisation using an antiserum against the PPI1 N-terminus and in Vicia faba guard cells and epidermal cells by transient expression of a GFP::PPI1 fusion. The results indicate that the bulk of PPI1 is localised at the endoplasmic reticulum, from which it might be recruited to the PM for interaction with the H+-ATPase in response to as yet unidentified signals.  相似文献   

10.
11.
The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme.  相似文献   

12.
We analyzed the effects of controlled treatments with trypsin of plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings on the activity of the PM H+-ATPase, and we compared them with those of fusicoccin (FC). Mild treatments of the PM with trypsin, which led to a decrease of the molecular mass of the peptide of about 10 kD, markedly increased the H+-ATPase activity. The effect strongly increased with the increase of pH of the assay medium from 6.1 to 7.5, so the pH optimum of the enzyme activity shifted from 6.8 in untreated PM to 7.1 in trypsin-treated PM. The proteolytic treatment activated only the portion of PM H+-ATPase activity that is stable to preincubation in assay medium in the absence of ATP and determined a strong increase of Vmax and a less marked decrease of the apparent Km for Mg-ATP. All of these effects were very similar to those determined by FC, which activated the PM H+-ATPase without promoting its proteolytic cleavage. FC did not further activate the H+-ATPase activity of trypsin-treated PM under conditions in which the FC receptor was protected from the attack of trypsin. Conversely, trypsin treatment had little effect on the PM H+-ATPase preactivated with FC. Moreover, the activity of the PM H+-ATPase preactivated with FC was not further activated by Iysolecithin. These results indicate that the modification of the PM H+-ATPase of higher plants triggered by the FC-receptor complex hinders the inhibitory interaction of the regulatory C-terminal domain with the active site.  相似文献   

13.
The plasma membrane of higher plants contains a H(+)-ATPase as its major ion pump. This enzyme belongs to the P-type family of cation-translocating enzymes and generates the proton-motive force that drives solute uptake across the plasma membrane. In Arabidopsis thaliana the plasma membrane H(+)-ATPase is encoded by a multigene family (Harper, J. F., Surowy, T. K., and Sussman, M. R. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1234-1238). The complete genomic sequence of a third Arabidopsis H(+)-ATPase isoform (referred to as AHA2) is presented here, and the predicted protein sequence is compared with previously published AHA1, AHA3, and tobacco Nicotiana plumbaginifolia NP1 isoforms. The AHA2 gene is most similar to AHA1, with predicted proteins containing 95% amino acid identity. The mRNA start site and 5'-untranslated sequence for AHA2 were determined from cDNA amplified by the polymerase chain reaction. The 5' region contains a 23-base pair (bp) polypyrimidine sequence and a short upstream reading frame. In comparison with the 16 introns reported in AHA3, AHA2 is missing one intron in the 5'-untranslated region and a second intron in the C-terminal coding region. An unusually large intron for Arabidopsis (greater than 1000 bp) is present at the beginning of the coding sequence of both AHA2 and AHA3. In the 3'-untranslated sequence of AHA1 and AHA2 but not AHA3, there is a 65-bp region of 85% identity and a second shorter region of 16-bp identity harboring an unusual putative poly(A) addition signal (dTTTGAAGAAACAAGGC). Northern blot analysis indicates that AHA2 mRNA relative to total cellular RNA is expressed at significantly higher levels in root tissue as compared with shoot tissue.  相似文献   

14.
Proton pump interactor, isoform 1 (PPI1) is a novel interactor of the C-terminus of Arabidopsis thaliana plasma membrane H(+)-ATPase (EC 3.6.3.6). We produced two fusion proteins consisting of, respectively, the first 88 amino acids or the entire protein deleted of the last 24 hydrophobic amino acids, and we show that the latter protein has a threefold higher affinity for the H(+)-ATPase. PPI1-induced stimulation of H(+)-ATPase activity dramatically decreased with the increase of pH above pH 6.8, but became largely pH-independent when the enzyme C-terminus was displaced by fusicoccin-induced binding of 14-3-3 proteins. The latter treatment did not affect PPI1 affinity for the H(+)-ATPase. These results indicate that PPI1 can bind the H(+)-ATPase independently of the C-terminus conformation, but is not able to suppress the C-terminus auto-inhibitory action.  相似文献   

15.
在高温锻炼(37℃,2h)过程中,豌豆(Pisum sativum L.)叶片过氧化氢(H_2O_2)和游离态水杨酸(SA)含量与质膜ATP酶(H~ -ATPase)活性都有一个高峰,H_2O_2的迸发早于游离态SA的积累,而质膜H~ -ATPase活性高峰的出现则迟于SA高峰;活性氧清除剂、抗氧化剂、质膜NADPH氧化酶抑制剂和H_2O_2的淬灭剂预处理均可有效地阻止高温下H_2O_2和SA的积累以及质膜H~ -ATPase活性的增加。根据以上结果推测,H_2O_2、质膜H~ -ATPase和SA均参与耐热性诱导相关的信号传递,前者作用于SA的上游,而后者在SA下游起作用。  相似文献   

16.
An investigation was carried out to assess the effect of nitrate supply on the root plasma membrane (PM) H+-ATPase of etiolated maize (Zea mays L.) seedlings grown in hydroponics. The treatment induced higher uptake rates of the anion and the expression of a putative high-affinity nitrate transporter gene (ZmNRT2.1), the first to be identified in maize. Root PM H+-ATPase activity displayed a similar time-course pattern as that of net nitrate uptake and investigations were carried out to determine which of the two isoforms reported to date in maize, MHA1 and 2, responded to the treatment. MHA1 was not expressed under the conditions analysed. Genome analysis revealed that MHA2, described as the most abundant form in all maize tissues, was not present in the maize hybrid investigated, but a similar form was found instead and named MHA3. A second gene (named MHA4) was also identified and partially sequenced. Both genes, classified as members of the PM H+-ATPase subfamily II, responded to nitrate supply, although to different degrees: MHA4, in particular, proved more sensitive than MHA3, with a greater up- and down-regulation in response to the treatment. Increased expression of subfamily II genes resulted in higher steady-state levels of the enzyme in the root tissues and enhanced ATP-hydrolysing activity. The results support the idea that greater proton-pumping activity is required when nitrate inflow increases and suggest that nitrate may be the signal triggering the expression of the two members of PM H+-ATPase subfamily II.  相似文献   

17.
SERCA1a, the fast-twitch skeletal muscle isoform of sarco(endo)plasmic reticulum Ca(2+)-ATPase, was expressed in yeast using the promoter of the plasma membrane H(+)-ATPase. In the yeast Saccharomyces cerevisiae, the Golgi PMR1 Ca(2+)-ATPase and the vacuole PMC1 Ca(2+)-ATPase function together in Ca2+ sequestration and Ca2+ tolerance. SERCA1a expression restored growth of pmc1 mutants in media containing high Ca2+ concentrations, consistent with increased Ca2+ uptake in an internal compartment. SERCA1a expression also prevented synthetic lethality of pmr1 pmc1 double mutants on standard media. Electron microscopy and subcellular fractionation analysis showed that SERCA1a was localized in intracellular membranes derived from the endoplasmic reticulum. Finally, we found that SERCA1a ATPase activity expressed in yeast was regulated by calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase. This result indicates that calcineurin contributes to calcium homeostasis by modulating the ATPase activity of Ca2+ pumps localized in intra-cellular compartments.  相似文献   

18.
以两相法提取纯化绿豆下胚轴质膜微囊,材料与两相体系重量之比为32∶8时,一次洗膜就可以得到纯度较高的质膜微囊。提取缓冲液中牛血清白蛋白的浓度对质膜H+-ATPase的潜在活性有影响。质膜H+-ATPase水解活性依赖于Mg2+,Ca2+对酶活性有明显的促进作用。壳梭孢素(fusicoccin, FC)对酶有明显的刺激作用,活体条件最大刺激达到72%,而离体条件下刺激为30%。  相似文献   

19.
The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 microM). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 microM, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting.  相似文献   

20.
The Ypt/Rab family of small G-proteins is important in regulating vesicular transport. Rabs hydrolyze GTP very slowly on their own and require GTPase-activating proteins (GAPs). Here we report the identification and characterization of OsGAP1, a Rab-specific rice GAP. OsGAP1 strongly stimulated OsRab8a and OsRab11, which are homologs of the mammalian Rab8 and Rab11 proteins that are essential for Golgi to plasma membrane (PM) and trans-Golgi network (TGN) to PM trafficking, respectively. Substitution of two invariant arginines within the catalytic domain of Oryza sativa GTPase-activating protein 1 (OsGAP1) with alanines significantly inhibited its GAP activity. In vivo targeting experiments revealed that OsGAP1 localizes to the TGN or pre-vacuolar compartment (PVC). A yeast expression system demonstrated that wild-type OsGAP1 facilitates O. sativa dissociation inhibitor 3 (OsGDI3)-catalyzed OsRab11 recycling at an early stage, but the OsGAP1(R385A) and (R450A) mutants do not. Thus, GTP hydrolysis is essential for Rab recycling. Moreover, expression of the OsGAP1 mutants in Arabidopsis protoplasts inhibited the trafficking of some cargo proteins, including the PM-localizing H+-ATPase-green fluorescent protein (GFP) and Ca2+-ATPase8-GFP and the central vacuole-localizing Arabidopsis aleurain-like protein (AALP)-GFP. The OsGAP1 mutants caused these proteins to accumulate at the Golgi apparatus. Surprisingly, OsRab11 overproduction relieved the inhibitory effect of the OsGAP1 mutants on vesicular trafficking. OsRab8a had no such effect. Thus, the OsGAP1 mutants may inhibit TGN to PM or central vacuole trafficking because they induce the sequestration of endogenous Rab11. We propose that OsGAP1 facilitates vesicular trafficking from the TGN to the PM or central vacuole by both stimulating the GTPase activity of OsRab11 and increasing the recycling of inactive OsRab11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号