共查询到20条相似文献,搜索用时 15 毫秒
1.
FtsN is a bitopic membrane protein and the last essential component to localize to the Escherichia coli cell division machinery, or divisome. The periplasmic SPOR domain of FtsN was previously shown to localize to the divisome in a self‐enhancing manner, relying on the essential activity of FtsN and the peptidoglycan synthesis and degradation activities of FtsI and amidases respectively. Because FtsN has a known role in recruiting amidases and is predicted to stimulate the activity of FtsI, it follows that FtsN initially localizes to division sites in a SPOR‐independent manner. Here, we show that the cytoplasmic and transmembrane domains of FtsN (FtsNCyto‐TM) facilitated localization of FtsN independently of its SPOR domain but dependent on the early cell division protein FtsA. In addition, SPOR‐independent localization preceded SPOR‐dependent localization, providing a mechanism for the initial localization of FtsN. In support of the role of FtsNCyto‐TM in FtsN function, a variant of FtsN lacking the cytoplasmic domain localized to the divisome but failed to complement an ftsN deletion unless it was overproduced. Simultaneous removal of the cytoplasmic and SPOR domains abolished localization and complementation. These data support a model in which FtsA–FtsN interaction recruits FtsN to the divisome, where it can then stimulate the peptidoglycan remodelling activities required for SPOR‐dependent localization. 相似文献
2.
Topological characterization of the essential Escherichia coli cell division protein FtsN. 总被引:4,自引:2,他引:4 下载免费PDF全文
Genetic and biochemical approaches were used to analyze a topological model for FtsN, a 36-kDa protein with a putative transmembrane segment near the N terminus, and to ascertain the requirements of the putative cytoplasmic and membrane-spanning domains for the function of this protein. Analysis of FtsN-PhoA fusions revealed that the putative transmembrane segment of FtsN could act as a translocation signal. Protease accessibility studies of FtsN in spheroblasts and inverted membrane vesicles confirmed that FtsN had a simple bitopic topology with a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large periplasmic carboxy terminus. To ascertain the functional requirements of the N-terminal segments of FtsN, various constructs were made. Deletion of the N-terminal cytoplasmic and membrane-spanning domains led to intracellular localization of the carboxy domain, instability,and loss of function. Replacement of the N-terminal cytoplasmic and membrane-spanning domains with a membrane-spanning domain from MalG restored subcellular localization and function. These N-terminal domains of FtsN could also be replaced by the cleavable MalE signal sequence with restoration of subcellular localization and function. It is concluded that the N-terminal, cytoplasmic, and transmembrane domains of FtsN are not required for function of the carboxy domain other than to transport it to the periplasm. FtsQ and FtsI were also analyzed. 相似文献
3.
Ursinus A van den Ent F Brechtel S de Pedro M Höltje JV Löwe J Vollmer W 《Journal of bacteriology》2004,186(20):6728-6737
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division. 相似文献
4.
Müller P Ewers C Bertsche U Anstett M Kallis T Breukink E Fraipont C Terrak M Nguyen-Distèche M Vollmer W 《The Journal of biological chemistry》2007,282(50):36394-36402
Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli. 相似文献
5.
Ana Isabel Rico Marta García‐Ovalle Pilar Palacios Mercedes Casanova Miguel Vicente 《Molecular microbiology》2010,76(3):760-771
Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto‐ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto‐ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto‐rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ‐deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ‐FtsA incomplete proto‐rings may require first a period for the reversal of these partial assemblies. 相似文献
6.
The membrane topology of Escherichia coli FtsW, a 46-kDa essential protein, was analyzed using a set of 28 ftsW-alkaline phosphatase (ftsW-phoA) and nine ftsW-beta-lactamase (ftsW-bla) gene fusions obtained by in vivo and in vitro methods. The alkaline phosphatase activities or resistance pattern of cells expressing the FtsW-PhoA or FtsW-Bla fusions confirmed only eight out of 10 transmembrane segments predicted by computational methods. After comparison with the recent topology of Streptococcus pneumoniae FtsW, we could identify all the fusions in absolute agreement with the predicted model: N-terminal and C-terminal ends in the cytoplasm, 10 transmembrane segments and one large loop of 67 amino acids (E240-E306) located in the periplasm. 相似文献
7.
Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division 下载免费PDF全文
Yim L Vandenbussche G Mingorance J Rueda S Casanova M Ruysschaert JM Vicente M 《Journal of bacteriology》2000,182(22):6366-6373
The role of the carboxy terminus of the Escherichia coli cell division protein FtsA in bacterial division has been studied by making a series of short sequential deletions spanning from residue 394 to 420. Deletions as short as 5 residues destroy the biological function of the protein. Residue W415 is essential for the localization of the protein into septal rings. Overexpression of the ftsA alleles harboring these deletions caused a coiled cell phenotype previously described for another carboxy-terminal mutation (Gayda et al., J. Bacteriol. 174:5362-5370, 1992), suggesting that an interaction of FtsA with itself might play a role in its function. The existence of such an interaction was demonstrated using the yeast two-hybrid system and a protein overlay assay. Even these short deletions are sufficient for impairing the interaction of the truncated FtsA forms with the wild-type protein in the yeast two-hybrid system. The existence of additional interactions between FtsA molecules, involving other domains, can be postulated from the interaction properties shown by the FtsA deletion mutant forms, because although unable to interact with the wild-type and with FtsADelta1, they can interact with themselves and cross-interact with each other. The secondary structures of an extensive deletion, FtsADelta27, and the wild-type protein are indistinguishable when analyzed by Fourier transform infrared spectroscopy, and moreover, FtsADelta27 retains the ability to bind ATP. These results indicate that deletion of the carboxy-terminal 27 residues does not alter substantially the structure of the protein and suggest that the loss of biological function of the carboxy-terminal deletion mutants might be related to the modification of their interacting properties. 相似文献
8.
The FtsA protein is a member of the actin superfamily that localizes to the bacterial septal ring during cell division. Deletions of domain 1C or the S12 and S13 beta-strands in domain 2B of the Escherichia coli FtsA, previously postulated to be involved in dimerization, result in partially active proteins that do not allow the normal progression of septation. The truncated FtsA protein lacking domain 1C (FtsADelta1C) localizes in correctly placed division rings, together with FtsZ and ZipA, but does not interact with other FtsA molecules in the yeast two-hybrid assay, and fails to recruit FtsQ and FtsN into the division ring. The rings containing FtsADelta1C are therefore incomplete and do not support division. The production of high levels of FtsADelta1C causes filamentation, an effect that has been reported to result as well from the imbalance between FtsA+ and FtsZ+ molecules. These data indicate that the domain 1C of FtsA participates in the interaction of the protein with other FtsA molecules and with the other proteins that are incorporated at later stages of ring assembly, and is not involved in the interaction with FtsZ and the localization of FtsA to the septal ring. The deletion of the S12-S13 strands of domain 2B generates a protein (FtsADeltaS12-13) that retains the ability to interact with FtsA+. When the mutated protein is expressed at wild-type levels, it localizes into division rings and recruits FtsQ and FtsN, but it fails to sustain septation at normal levels resulting in filamentation. A fivefold overexpression of FtsADeltaS12-13 produces short cells that have normal division rings, but also cells with polar localization of the mutated protein, and cells with rings at abnormal positions that result in the production of a fraction (15%) of small nucleoid-free cells. The S12-S13 strands of domain 2B are not essential for septation, but affect the localization of the division ring. 相似文献
9.
Martos A Monterroso B Zorrilla S Reija B Alfonso C Mingorance J Rivas G Jiménez M 《PloS one》2012,7(6):e39829
We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures. 相似文献
10.
The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA–FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring 下载免费PDF全文
Assembly of the divisome in Escherichia coli occurs in two temporally distinct steps. First, FtsZ filaments attached to the membrane through interaction with FtsA and ZipA coalesce into a Z ring at midcell. Then, additional proteins are recruited to the Z ring in a hierarchical manner to form a complete divisome, activated by the arrival of FtsN. Recently, we proposed that the interaction of FtsA with itself competes with its ability to recruit downstream division proteins (both require the IC domain of FtsA) and ZipA's essential function is to promote the formation of FtsA monomers. Here, we tested whether overexpression of a downstream division protein could make ZipA dispensable, presumably by shifting the FtsA equilibrium to monomers. Only overexpression of FtsN bypassed ZipA and a conserved motif in the cytoplasmic domain of FtsN was required for both the bypass and interaction with FtsA. Also, this cytoplasmic motif had to be linked to the periplasmic E domain of FtsN to bypass ZipA, indicating that linkage of FtsA to periplasmic components of the divisome through FtsN was essential under these conditions. These results are used to further elaborate our model for the role of FtsA in recruiting downstream division proteins. 相似文献
11.
The essential cell division protein FtsN contains a critical disulfide bond in a non‐essential domain 下载免费PDF全文
Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity is unclear. While it evidently plays a role in the proper folding of the SPOR domain of FtsN, this domain is non‐essential, suggesting that the disulfide bond might also be dispensable. However, we find that FtsN mutants lacking cysteines give rise to filamentous growth. Furthermore, FtsN protein levels in strains expressing these mutants were significantly lower than in a strain expressing the wild‐type allele, as were FtsN levels in strains incapable of making disulfide bonds (dsb‐) exposed to anaerobic conditions. These results strongly suggest that FtsN lacking a disulfide bond is unstable, thereby making this disulfide critical for function. We have previously found that dsb‐ strains fail to grow anaerobically, and the results presented here suggest that this growth defect may be due in part to misfolded FtsN. Thus, proper cell division in E. coli is dependent upon disulfide bond formation. 相似文献
12.
The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. 总被引:12,自引:3,他引:12 下载免费PDF全文
Interactions among cell division genes in Escherichia coli were investigated by examining the effect on cell division of increasing the expression of the ftsZ, ftsA, or ftsQ genes. We determined that cell division was quite sensitive to the levels of FtsZ and FtsA but much less so to FtsQ. Inhibition of cell division due to an increase in FtsZ could be suppressed by an increase in FtsA. Inhibition of cell division due to increased FtsA could be suppressed by an increase in FtsZ. In addition, although wild-type strains were relatively insensitive to overexpression of ftsQ, we observed that cell division was sensitized to ftsQ overexpression in ftsI, ftsA, and ftsZ mutants. Among these, the ftsI mutant was the most sensitive. These results suggest that these gene products may interact and that the proper ratio of FtsZ to FtsA is critical for cell division to occur. 相似文献
13.
High-level expression of the FtsA protein inhibits cell septation in Escherichia coli K-12. 总被引:3,自引:6,他引:3 下载免费PDF全文
DNA fragments encoding the ftsA gene were subcloned into plasmids downstream of a lac promoter or a tac promoter. These plasmid constructs, when transformed into wild-type and mutant strains, inhibited normal cell septation, causing the formation of long nonseptate filaments. This phenotype is due to overproduction of the FtsA protein. 相似文献
14.
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene. 相似文献
15.
FtsZs from Mycoplasma pulmonis (MpuFtsZ) and Bacillus subtilis (BsFtsZ) are only 46% and 53% identical in amino acid sequence to FtsZ from Escherichia coli (EcFtsZ). In the present study we show that MpuFtsZ and BsFtsZ can function for cell division in E. coli provided we make two modifications. First, we replaced their C-terminal tails with that from E. coli, giving the foreign FtsZ the binding site for E. coli FtsA and ZipA. Second, we selected for mutations in the E. coli genome that facilitated division by the foreign FtsZs. These suppressor strains arose at a relatively high frequency of 10(-3) to 10(-5), suggesting that they involve loss-of-function mutations in multigene pathways. These pathways may be negative regulators of FtsZ or structural pathways that facilitate division by slightly defective FtsZ. Related suppressor strains were obtained for EcFtsZ containing certain point mutations or insertions of yellow fluorescent protein. The ability of highly divergent FtsZs to function for division in E. coli is consistent with a two-part mechanism. FtsZ assembles the Z ring, and perhaps generates the constriction force, through self interactions; the downstream division proteins remodel the peptidoglycan wall by interacting with each other and the wall. The C-terminal peptide of FtsZ, which binds FtsA, provides the link between FtsZ assembly and peptidoglycan remodeling. 相似文献
16.
Bacterial cell division requires formation of a septal ring. A key step in septum formation is polymerization of FtsZ. FtsA directly interacts with FtsZ and probably targets other proteins to the septum. We have solved the crystal structure of FtsA from Thermotoga maritima in the apo and ATP-bound form. FtsA consists of two domains with the nucleotide-binding site in the interdomain cleft. Both domains have a common core that is also found in the actin family of proteins. Structurally, FtsA is most homologous to actin and heat-shock cognate protein (Hsc70). An important difference between FtsA and the actin family of proteins is the insertion of a subdomain in FtsA. Movement of this subdomain partially encloses a groove, which could bind the C-terminus of FtsZ. FtsZ is the bacterial homologue of tubulin, and the FtsZ ring is functionally similar to the contractile ring in dividing eukaryotic cells. Elucidation of the crystal structure of FtsA shows that another bacterial protein involved in cytokinesis is structurally related to a eukaryotic cytoskeletal protein involved in cytokinesis. 相似文献
17.
Derouaux A Wolf B Fraipont C Breukink E Nguyen-Distèche M Terrak M 《Journal of bacteriology》2008,190(5):1831-1834
The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins. 相似文献
18.
19.
Pastoret S Fraipont C den Blaauwen T Wolf B Aarsman ME Piette A Thomas A Brasseur R Nguyen-Distèche M 《Journal of bacteriology》2004,186(24):8370-8379
Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in peptidoglycan assembly during cell elongation, division, and sporulation. This essential cell division protein has 10 transmembrane segments (TMSs). It is a late recruit to the division site and is required for subsequent recruitment of penicillin-binding protein 3 (PBP3) catalyzing peptide cross-linking. The results allow identification of several domains of the protein with distinct functions. The localization of PBP3 to the septum was found to be dependent on the periplasmic loop located between TMSs 9 and 10. The E240-A249 amphiphilic peptide in the periplasmic loop between TMSs 7 and 8 appears to be a key element in the functioning of FtsW in the septal peptidoglycan assembly machineries. The intracellular loop (containing the R166-F178 amphiphilic peptide) between TMSs 4 and 5 and Gly 311 in TMS 8 are important components of the amino acid sequence-folding information. 相似文献
20.
The ever increasing problem of antibiotic resistance necessitates a search for new drug molecules that would target novel proteins in the prokaryotic system. FtsZ is one such target protein involved in the bacterial cell division machinery. In this study, we have shown that berberine, a natural plant alkaloid, targets Escherichia coli FtsZ, inhibits the assembly kinetics of the Z-ring, and perturbs cytokinesis. It also destabilizes FtsZ protofilaments and inhibits the FtsZ GTPase activity. Saturation transfer difference NMR spectroscopy of the FtsZ-berberine complex revealed that the dimethoxy groups, isoquinoline nucleus, and benzodioxolo ring of berberine are intimately involved in the interaction with FtsZ. Berberine perturbs the Z-ring morphology by disturbing its typical midcell localization and reduces the frequency of Z-rings per unit cell length to half. Berberine binds FtsZ with high affinity ( K D approximately 0.023 microM) and displaces bis-ANS, suggesting that it may bind FtsZ in a hydrophobic pocket. Isothermal titration calorimetry suggests that the FtsZ-berberine interaction occurs spontaneously and is enthalpy/entropy-driven. In silico molecular modeling suggests that the rearrangement of the side chains of the hydrophobic residues in the GTP binding pocket may facilitate the binding of the berberine to FtsZ and lead to inhibition of the association between FtsZ monomers. Together, these results clearly indicate the inhibitory role of berberine on the assembly function of FtsZ, establishing it as a novel FtsZ inhibitor that halts the first stage in bacterial cell division. 相似文献