首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
为了解水稻(Oryza sativa)组蛋白去乙酰化酶HDA705的生物学功能,构建了HDA705酵母双杂交诱饵表达载体与双杂交文库,并筛选了与HDA705相互作用的蛋白。结果表明,HDA705的诱饵载体无自激活活性且对酵母无毒性作用,文库的滴度也适合常规的酵母双杂交文库筛选。通过对酵母双杂交文库的筛选,共获得了164个阳性克隆,经DNA测序分析,这些克隆编码47个可能与HDA705相互作用的蛋白,其中包括3个在逆境响应或激素信号转导过程中起到重要作用的(辅)转录因子、6个参与光合作用的叶绿体蛋白、1个含有R3H结构域的蛋白以及22种酶类等。这为进一步研究HDA705的生物学功能提供了重要的线索。  相似文献   

5.
6.
Zhou C  Zhang L  Duan J  Miki B  Wu K 《The Plant cell》2005,17(4):1196-1204
Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases, which play key roles in the regulation of eukaryotic gene expression. Previously, we have identified a yeast histone deacetylase REDUCED POTASSIUM DEPENDENCY3 (RPD3) homolog, HISTONE DEACETYLASE19 (HDA19) (AtRPD3A), in Arabidopsis thaliana. Here, we report further study of the expression and function of HDA19. Analysis of Arabidopsis plants containing the HDA19:beta-glucuronidase fusion gene revealed that HDA19 was expressed throughout the life of the plant and in most plant organs examined. In addition, the expression of HDA19 was induced by wounding, the pathogen Alternaria brassicicola, and the plant hormones jasmonic acid and ethylene. Using green fluorescent protein fusion, we demonstrated that HDA19 accumulated in the nuclei of Arabidopsis cells. Overexpression of HDA19 in 35S:HDA19 plants decreased histone acetylation levels, whereas downregulation of HDA19 in HDA19-RNA interference (RNAi) plants increased histone acetylation levels. In comparison with wild-type plants, 35S:HDA19 transgenic plants had increased expression of ETHYLENE RESPONSE FACTOR1 and were more resistant to the pathogen A. brassicicola. The expression of jasmonic acid and ethylene regulated PATHOGENESIS-RELATED genes, Basic Chitinase and beta-1,3-Glucanase, was upregulated in 35S:HDA19 plants but downregulated in HDA19-RNAi plants. Our studies provide evidence that HDA19 may regulate gene expression involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis.  相似文献   

7.
8.
9.
10.
11.
While considerable progress has been achieved in plant CDPK studies in the past decade, there is relatively no information about the potential substrates of CRKs. In this report, a yeast two-hybrid screen was performed with truncated form of AtCRK3 as bait to identify its interacting proteins in an effort to dissect its physiological roles. One gene encoding cytosolic glutamine synthetase AtGLN1;1 was isolated. Further analyses indicated that AtGLN1;1 could interact specifically with AtCRK3 and the kinase domain of AtCRK3 and the catalytic domain of AtGLN1;1 were responsible for such interaction, respectively. Furthermore, in vitro and in vivo co-immunoprecipitation results strongly supported that they could physically interact with each other. Phosphorylation assays revealed that AtGLN1;1 could be specifically phosphorylated by AtCRK3 in vitro. All the results demonstrate that AtGLN1;1 may be a substrate of AtCRK3. In addition, both AtGLN1;1 and AtCRK3 could be induced by natural or artificially induced leaf senescence, implying that such interaction may be involved in the regulation of nitrogen remobilization during leaf senescence.  相似文献   

12.
13.
14.
Yu CW  Liu X  Luo M  Chen C  Lin X  Tian G  Lu Q  Cui Y  Wu K 《Plant physiology》2011,156(1):173-184
Histone acetylation and deacetylation play an important role in epigenetic controls of gene expression. HISTONE DEACETYLASE6 (HDA6) is a REDUCED POTASSIUM DEPENDENCY3-type histone deacetylase, and the Arabidopsis (Arabidopsis thaliana) hda6 mutant axe1-5 displayed a late-flowering phenotype. axe1-5/flc-3 double mutants flowered earlier than axe1-5 plants, indicating that the late-flowering phenotype of axe1-5 was FLOWERING LOCUS C (FLC) dependent. Bimolecular fluorescence complementation, in vitro pull-down, and coimmunoprecipitation assays revealed the protein-protein interaction between HDA6 and the histone demethylase FLD. It was found that the SWIRM domain in the amino-terminal region of FLD and the carboxyl-terminal region of HDA6 are responsible for the interaction between these two proteins. Increased levels of histone H3 acetylation and H3K4 trimethylation at FLC, MAF4, and MAF5 were found in both axe1-5 and fld-6 plants, suggesting functional interplay between histone deacetylase and demethylase in flowering control. These results support a scenario in which histone deacetylation and demethylation cross talk are mediated by physical association between HDA6 and FLD. Chromatin immunoprecipitation analysis indicated that HDA6 bound to the chromatin of several potential target genes, including FLC and MAF4. Genome-wide gene expression analysis revealed that, in addition to genes related to flowering, genes involved in gene silencing and stress response were also affected in hda6 mutants, revealing multiple functions of HDA6. Furthermore, a subset of transposons was up-regulated and displayed increased histone hyperacetylation, suggesting that HDA6 can also regulate transposons through deacetylating histone.  相似文献   

15.
16.
17.
Proteomic analysis of rice seedlings during cold stress   总被引:4,自引:0,他引:4  
Hashimoto M  Komatsu S 《Proteomics》2007,7(8):1293-1302
Low temperature is one of the important environmental changes that affect plant growth and agricultural production. To investigate the responses of rice to cold stress, changes in protein expression were analyzed using a proteomic approach. Two-week-old rice seedlings were exposed to 5 degrees C for 48 h, then total crude proteins were extracted from leaf blades, leaf sheaths and roots, separated by 2-DE and stained with CBB. Of the 250-400 protein spots from each organ, 39 proteins changed in abundance after cold stress, with 19 proteins increasing, and 20 proteins decreasing. In leaf blades, it was difficult to detect the changes in stress-responsive proteins due to the presence of an abundant protein, ribulose bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU), which accounted for about 50% of the total proteins. To overcome this problem, an antibody-affinity column was prepared to trap RuBisCO LSU, and the remaining proteins in the flow through from the column were subsequently separated using 2-DE. As a result, slight changes in stress responsive proteins were clearly displayed, and four proteins were newly detected after cold stress. From identified proteins, it was concluded that proteins related to energy metabolism were up-regulated, and defense-related proteins were down-regulated in leaf blades, by cold stress. These results suggest that energy production is activated in the chilling environment; furthermore, stress-related proteins are rapidly up-regulated, while defense-related proteins disappear, under long-term cold stress.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号