首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover.

Results

The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover.

Conclusion

G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.  相似文献   

2.
Wu J  Zhang X  Wan J  Ma F  Tang Y  Zhang X 《Bioresource technology》2011,102(24):11258-11261
Corn stalk pretreated with white-rot fungus Trametes hirsute was used to produce fiberboard by hot pressing without adhesive. The moduli of rupture and elasticity of the corn-stalk-based fiberboard were increased 3.40- and 8.87-fold when bio-pretreated rather than untreated corn stalk was used. Fourier transform infra-red spectroscopy, X-ray diffraction, and chemical analysis showed that bio-pretreated corn stalk increased the mechanical properties of the fiberboard because it had more than twice the number of hydroxyl group, an 18% higher crystallinity, and twice the polysaccharide content of untreated corn stalk. Its laccase content was 4.65 ± 0.38 U/g. Corn stalk-based fiberboard production did not require adhesives, thus eliminating a potential source of toxic emissions such as formaldehyde gas.  相似文献   

3.
4.
Solid-state fermentation (SSF) with Agaricus brasiliensis and Agaricus bisporus on corn was carried out. The results showed that SSF with the two fungi made up the deficiency of tryptophan in corn and improved the protein nutritional value of corn. The conjugated polyphenols contents in fermented corn decreased and free polyphenols (FPP) contents increased. FPP contents in corn fermented with the two fungi reached respectively 25 and 88 times of control, total polyohenols contents reached respectively 1.4 and 3.3 times of control. The antioxidant properties (i.e. 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, reducing power, ferrous ion chelating ability and superoxide anion radical scavenging ability) of fermented corn were improved significantly. SSF with A. bisporus was more favorable to the enhancement in protein nutritional value and antioxidant properties of corn than that of A. brasiliensis. The results indicated that SSF with the two fungi could upgrade the protein nutritional value, FPP content and antioxidant properties of corn.  相似文献   

5.
We used isomeric fluorotoluenes as model substrates to study the catabolism of toluene by five deuteromycete fungi and one ascomycete fungus capable of growth on toluene as the sole carbon and energy source, as well as by two fungi (Cunninghamella echinulata and Aspergillus niger) that cometabolize toluene. Whole cells were incubated with 2-, 3-, and 4-fluorotoluene, and metabolites were characterized by 19F nuclear magnetic resonance. Oxidation of fluorotoluene by C. echinulata was initiated either at the aromatic ring, resulting in fluorinated o-cresol, or at the methyl group to form fluorobenzoate. The initial conversion of the fluorotoluenes by toluene-grown fungi occurred only at the side chain and resulted in fluorinated benzoates. The latter compounds were the substrate for the ring hydroxylation and, depending on the fluorine position, were further metabolized up to catecholic intermediates. From the 19F nuclear magnetic resonance metabolic profiles, we propose that diverse fungi that grow on toluene assimilate toluene by an initial oxidation of the methyl group.  相似文献   

6.
7.
In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum.  相似文献   

8.
Partially degraded sugar beet (Beta vulgaris) pectins were characterised in terms of galacturonic acid, neutral sugar and ferulic acids contents. It was shown that the total neutral sugar content is correlated with the ferulic acid content. One pectin (C) was further characterised by size exclusion chromatography coupled to refractive index and UV detectors (SEC-RI-UV). This gave the opportunity to estimate how the ferulic acid and neutral sugar contents changed with hydrodynamic radius. Pectin C was found to be heterogeneous in composition with neutral sugar-rich fractions of both high and low hydrodynamic radii. A neutral sugar-poor fraction was found at intermediate hydrodynamic radii.  相似文献   

9.
Bags of Pinus strobus wood chips with moisture contents of 38, 92, 164, and 217% (oven dry weight) were inoculated with Bursaphelenchus xylophilus and incubated at 30 C in order to determine the effect of wood moisture on nematode population development. Nematodes were extracted after 2, 4, 8, and 12 weeks. Population levels were greatest in wood chips with a moisture content of 38% and decreased successively with each higher moisture content. In chips with the three lower moisture contents, populations peaked at 2 weeks, but at 217% moisture, they peaked at 8 weeks. By 12 weeks, nematode populations had declined in wood chips with 92 and 164% moisture contents. The fungi most frequently isolated from the wood chips were Alternaria, Fusarium, Gliocladium, Graphium, Penicillium, Trichoderma, and Mucorales.  相似文献   

10.
The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi.  相似文献   

11.
Microbial Hydroxylation of Indole Alkaloids   总被引:1,自引:1,他引:0       下载免费PDF全文
The hydroxylation of the indole-type alkaloids, yohimbine, α-yohimbine, β-yohimbine, and corynanthine, was achieved with several genera of higher fungi and species of Streptomyces. Microorganisms were found which monohydroxylated these compounds in three different positions. The site of hydroxylation was strain-specific for two strains of Cunninghamella echinulata and C. bainieri.  相似文献   

12.
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant.  相似文献   

13.
《Process Biochemistry》2007,42(1):89-92
In order to make full use of soybean stalk produced in large quantity annually in China, a process is proposed for production of lactic acid from soybean stalk hydrolysate with Lactobacillus sake and Lactobacillus casei. Experiments were conducted using the proposed process and experimental results indicate that the potential of 242 mg (g stalk)−1 fermentable sugar is released from hydrolysate through enzymatic saccharication with a saccharication of 51%. The main sugar released from pretreated soybean stalk through enzymatic hydrolysis was a mixture of glucose, xylose and cellobiose at a ratio of 3.9:1.7:1. Fermentation of soybean stalk hydrolysate by L. sake and L. casei yielded the lactic acid conversion of 48% and 56%, respectively, however, lactic acid conversion increased to 71% by co-inoculation of both strains. L. sake and L. casei were able to degrade glucose, but unable to completely assimilate xylose and cellobiose. The proposed process can be used to produce lactic acid from soybean stalk hydrolysate.  相似文献   

14.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

15.
Seasonal fluctuations in field populations of Meloidogyne incognita, Pratylenchus zeae, P. brachyurus, Criconemoides ornatus, Trichodorus christiei, and Helicotylenchus dihystera on monocultured corn, cotton, peanut, and soybean were determined monthly for 4 yr. Population densities of M. incognita were greater in corn and cotton plots than in peanut and soybean plots from July until January. Those of Pratylenchus spp. were greater on corn and soybean than on cotton and peanut during all months except May and June. C. ornatus populations were greater on corn and peanut than on cotton and soybean during all months. C. ornatus on corn and peanut was more numerous in July than in other months. There was no significant increase in populations of T. christiei, except on corn in June. H. dihystera was greater in cotton and soybean plots than in corn and peanut plots from August through December.  相似文献   

16.
Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms.  相似文献   

17.
不同培养料和发酵次数栽培巴氏菇比较   总被引:1,自引:0,他引:1  
李丹  冯德昌  李玉 《菌物研究》2010,8(2):115-118
分别以玉米秸秆和稻草为培养料栽培巴氏菇,对菌丝生长性状进行对比;同时,在我国传统发酵栽培方法的基础上,将三次发酵法与二次发酵法进行了对比。试验结果表明:利用玉米秸秆栽培的巴氏菇在发菌速度及子实体质量和产量上均优于稻草;培养料经过3次发酵更适宜巴氏菇生长。经过3次发酵的玉米秸秆培养料栽培的巴氏菇产量和生物学效率分别为7.7 kg/m2和27.5%,子实体粗蛋白含量44.89%,可溶性糖含量44.01%,18种氨基酸总量31.70%,明显高于2次发酵的玉米秸秆培养料及2次、3次发酵的稻草培养料。  相似文献   

18.
Three parameters (i.e. the water content, soluble sugar content and minimal air temperature) can be used to predict the cold acclimation process of walnut trees. In order to test this assumption, two-year-old walnuts were defoliated at two different dates, i.e. mechanical defoliation in early October (early leaf fall, EF) or natural defoliation in early November (natural leaf fall, NF) and conditioned in either outdoor freeze-deprived or cold-deprived (Tmin > 13 °C) greenhouses over winter. Even if early defoliation date could have affected short day signal perception (SDSP), water balance and carbohydrate metabolism were more altered. EF treatment, by stopping transpiration, significantly increased tree's water content and at warm temperature high root activity stopped normal winter dehydration. Starch content decreased in all treatments, but there was only a significant increase in soluble sugar content when water content had sufficiently decreased. Thus, depending on date of defoliation, cold-deprived trees were or were not able to acclimate to frost (minimal frost hardiness = −21.8 °C vs. −22.1 °C in controls (freeze-deprived) for NF and −13.7 °C vs. −25.3 °C in controls for EF). Different treatments showed the relationship between minimal water content observed during winter and maximal soluble sugars synthesized. Thus, the cold acclimation process appeared dependent on these physiological parameters (water and soluble sugar contents) through the interaction between air temperature and timing of leaf fall.  相似文献   

19.
The efficacy of fallow and coastal bermudagrass (Cynodon dactylon) as a rotation crop for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus cv. Emerald), squash (Cucurbita pepo cv. Dixie Hybrid), and sweet corn (Zea mays cv. Merit) was evaluated in a 3-year field trial. Numbers of M. incognita in the soil and root-gall indices were greater on okra and squash than sweet corn and declined over the years on vegetable crops following fallow and coastal bermudagrass sod. Fusarium oxysporum and Pythium spp. were isolated most frequently from soil and dying okra plants. Numbers of colony-forming units of soilborne fungi generally declined as the number of years in sod increased, but were not affected by coastal bermudagrass sod. Yields of okra following 2-year and 3-year sod and squash following 2-year sod were greater than those following fallow. Yield of sweet corn was not different following fallow and coastal bermudagrass sod.  相似文献   

20.
In this study, a newly isolated Trametes hirsuta yj9 was used to pretreat corn stover in order to enhance enzymatic digestibility. T. hirsuta yj9 preferentially degraded lignin to be as high as 71.49% after 42-day pretreatment. Laccase and xylanase was the major ligninolytic and hydrolytic enzyme, respectively and filter paper activity (FPA) increased gradually with prolonged pretreatment time. Sugar yields increased significantly after pretreatment with T. hirsuta yj9, reaching an enzymatic digestibility of 73.99% after 42 days of pretreatment. Scanning electron microscopy (SEM) showed significant structural changes in pretreated corn stover, the surface of pretreated corn stover became increasingly coarse, the gaps between cellulose fibers were visible, and many pores were developed. Correlation analysis showed that sugar yields were inversely proportional to the lignin contents, less related to cellulose and hemicellulose contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号