首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60 °C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.  相似文献   

2.
Zhou W  Li Y  Min M  Hu B  Chen P  Ruan R 《Bioresource technology》2011,102(13):6909-6919
Mass cultivation of microalgae for biofuel production depends heavily on the performance of the microalgae strains used. In this study, 60 algae-like microorganisms collected from different sampling sites in Minnesota were examined using multi-step screening and acclimation procedures to select high-lipid producing facultative heterotrophic microalgae strains capable of growing on concentrated municipal wastewater (CMW) for simultaneous energy crop production and wastewater treatment. Twenty-seven facultative heterotrophic microalgae strains were found, among which 17 strains were proved to be tolerant to CMW. These 17 top-performing strains were identified through morphological observation and DNA sequencing as Chlorella sp., Heynigia sp., Hindakia sp., Micractinium sp., and Scenedesmus sp. Five strains were chosen for other studies because of their ability to adapt to CMW, high growth rates (0.455-0.498 d−1) and higher lipid productivities (74.5-77.8 mg L−1 d−1). These strains are considered highly promising compared with other strains reported in the literature.  相似文献   

3.
Microalgae are a promising alternative source of oil for biodiesel production. Identification of a species with desirable characteristics is a key component towards achieving economic feasibility for the process. This has been compromised by a lack of data allowing effective interspecies comparison. Eleven species of microalgae, selected on the basis of available literature data, were tested for lipid productivity, gravity sedimentation and the suitability of their fatty acid profiles for biodiesel production. The response to nitrogen limitation was species-specific. Lipid yields and productivity were higher at 150?mg?L?1 nitrate than at 1,500?mg?L?1 for all species tested except Spirulina platensis. The Chlorophyta, particularly Chlorella vulgaris and Scenedesmus, had the highest growth rates and showed the greatest increase in lipid content in response to nitrogen limitation. Cylindrotheca fusiformis, S. platensis, Scenedesmus and Tetraselmis suecica had the fastest settling rates and highest biomass recoveries after 24?h of gravity sedimentation. For most species, the fuel would need to be blended or culture conditions to be optimised to achieve the correct lipid profile in order for microalgal fuel to meet the European standards for biodiesel production (EN 14214). The most promising species overall were the freshwater algae Scenedesmus and C. vulgaris and the marine algae C. fusiformis and Nannochloropsis.  相似文献   

4.
Vitamin analysis was carried out on five microalgae used in aquaculture:Tetraselmis suecica, Isochrysis galbana, Pavlova lutheri, Skeletonema costatum andChaetoceros calcitrans and one macroalga,Sargassum muticum, which is invasive on the Atlantic shores of France. Both liposoluble (provitamin A, E, K) and hydrosoluble (B1, B2, B6, B12, C, PP) vitamins were quantified. For most of them, greater amounts were obtained in the algal products than in the usual sources. On a dry weight basis,Tetraselmis suecica contained 4280 μg g?1 provitamin A and 6323 μg g?1 vitamin E,Pavlova lutheri 1162 μg g?1 vitamin B12 and 837 μg g?1 vitamin C,Isochrysis galbana 2690 μg g?1 vitamin PP and 183 μg g?1 vitamin B6, andSkeletonema costatum 710 μg g?1 vitamin B1.  相似文献   

5.
Abstract

In this study, the decolorization efficiency of seven microalgae isolates; Nostoc muscorum, Nostoc humifusum, Spirulina platensis, Anabaena oryzae, Wollea saccata, Oscillatoria sp. and Chlorella vulgaris was investigated for dye decolorization. The highest decolorization percentages of Brazilwood, Orange G, and Naphthol Green B dyes (99.5%, 99.5%, and 98.5%, respectively) were achieved by Chlorella vulgaris. However, the maximum efficiency for dye decolorization percentages of CV and malachite green dyes were exhibited by A. oryzae (97.4%) and W. saccata (93.3%). Ligninolytic enzymes activity assay was carried out for laccase and lignin peroxidase enzymes, which revealed a high efficiency of the C. vulgaris, A. oryzae and W. saccata to lignin containing compound degradation. The highest laccase production recorded by C. vulgaris with Brazilwood, Orange G, and Naphthol Green B dyes (665.0, 678.6, and 659.5?U/ml, respectively). Similarly, C. vulgaris gave a high lignin peroxidase enzyme production with the above three dyes respectively (306.00, 298.34, and 311.45?U/ml). In addition, A. oryzae and W. saccata showed the highest production of the laccase enzyme (634.6 and 577.45?U/ml, respectively) with CV and malachite green dyes. The degradation products have been characterized after decolorization and verified using FTIR analysis. The high decolorization percentages achieved by C. vulgaris, A. oryzae and W. saccata make them potential candidates for bioremediation and pre-processing to remove dyes from textile effluents.  相似文献   

6.
Production of biosurfactant by crude oil degrading bacteria for use in microbial enhanced oil recovery was investigated. Crude oil utilizing bacteria were isolated from soil by enrichment method on oil agar at 30 °C for 5 days. The isolates were identified and screened for biosurfactant production using blood haemolysis and emulsification tests. IR and GC–MS analyses were carried out to detect the type of biosurfactant. The biosurfactant was purified and its stability at various pH, temperature and salinity levels was studied. The organisms were identified as: Achromobacter xylosoxidans subspecies xylosoxidans, Bacillus licheniformis, Proteus vulgaris, Proteus mirabilis, Serratia marcescens, Sphingomonas paucimobilis and Micrococcus kristinae. Emulsification test (E24) revealed that Serratia marcescens had the highest emulsification index of 87%. GC–MS indicated the biosurfactants as lipopeptides. The biosurfactant can be used in EOR under various environmental conditions.  相似文献   

7.
Microalgae have previously been reported to contain β-N-methylamino-l-alanine (BMAA), and the global presence of these primary producers has been associated with the widespread occurrence of BMAA in marine organisms. It has been repeatedly shown that filter-feeding bivalves accumulate phytoplankton species and their toxins. In this study, the concentrations of total soluble BMAA and DAB as a function of growth phase were observed for four non-axenic diatom species (i.e. Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and Thalassiosira pseudonana). These strains had previously been shown to contain BMAA using a highly selective HILIC-MS/MS method. BMAA cell quota appeared to be species-specific, however, highest BMAA concentrations were always obtained during the stationary growth phase, for all four species, suggesting that BMAA is a secondary metabolite. While DAB was detected in a bacterial culture isolated from a culture of P. tricornutum, the presence or absence of a bacterial population did not influence production of BMAA and DAB by P. tricornutum, i.e. no significant difference was noted for BMAA and DAB production between axenic and non-axenic cultures. The presence of DAB in bacteria had previously been shown, and raised the question as to whether DAB observed in many species of microalgae may arise from the non-axenic culture conditions or from the microalgae themselves.  相似文献   

8.
The tolerance to shear stress of Tetraselmis suecica, Isochrysis galbana, Skeletonema costatum, and Chaetoceros muelleri was determined in shear cylinders. The shear tolerance of the microalgae species strongly depends on the strain. I. galbana, S. costatum, and C. muelleri exposed to shear stress between 1.2 and 5.4 Pa resulted in severe cell damage. T. suecica is not sensitive to stresses up to 80 Pa. The possibility to grow these algae in a tubular photobioreactor (PBR) using a centrifugal pump for recirculation of the algae suspension was studied. The shear stresses imposed on the algae in the circulation tubes and at the pressure side of the pump were 0.57 and 1.82 Pa, respectively. The shear stress tolerant T. suecica was successfully cultivated in the PBR. Growth of I. galbana, S. costatum, and C. muelleri in the tubular PBR was not observed, not even at the lowest pumping speed. For the latter shear sensitive strains, the encountered shear stress levels were in the order of magnitude of the determined maximum shear tolerance of the algae. An equation was used to simulate the effect of possible damage of microalgae caused by passages through local high shear zones in centrifugal pumps on the total algae culture in the PBR. This simulation shows that a culture of shear stress sensitive species is bound to collapse after only limited number of passages, confirming the importance of considering shear stress as a process parameter in future design of closed PBRs for microalgal cultivation.  相似文献   

9.
Microalgae are considered a promising source of oil for biodiesel production. This work reports an estimation method of oil content inside living microalgal cells by visualization and image processing techniques. This approach was used to analyze the time course of oil accumulation patterns in Nile Red-stained microalgal cells of Scenedesmus sp. cultivated in nitrogen-deficient medium used to induce oil accumulation in microalgal cells. Nile Red staining is a widely used technique for studying oil content of microalgal cells. The intracellular oil content was estimated by mathematically evaluating the oil volume inside the stained cell. This novel visualization approach has the potential to be used in ex vivo studies of oil content at the level of single microalgal cells. This method can also be applied to other types of oil-producing microorganisms because of its accuracy, precision, and reduction in the time and effort required for optimization.  相似文献   

10.
Yoldia hyperborea (Loven) is a deposit feeder species living in muddy sediments of Conception Bay (Newfoundland, Canada) where it is exposed to a seasonal input of sinking phytoplankton during spring. Data field indicates that this species exhibits an increasing gonad development shortly after the sinking of phytodetritus event, suggesting a close relationship between this food pulse and reproduction. Laboratory experiments carried out with a mixture of laboratory-grown senescent algae Isochrysis galbana, Tetraselmis suecica and Chaetoceros affinis were able to mimic the reproductive response described for Yoldia individuals inhabiting Conception Bay.A dual marker experiment using 14C and 68Ge radiolabelled Thalassiosira nordenskioldii demonstrated that Y. hyperborea fed on T. nordenskioldii and 14C was incorporated into the gonad tissue. Consequently experimental individuals periodically supplied with senescent algae concentrate produced more and larger oocytes than control individuals. These results would help to understand the influence of the sinking phytodetritus in the reproductive activity of Y. hyperborea at Conception Bay.  相似文献   

11.
The growth of algae strains Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of technical glycerol was investigated with the aim of increasing biomass growth and algae oil content. The highest concentration of lipid obtained in media with 5 g L?1 glycerol for Chlorella sp., Scenedesmus sp., Nannochloris sp. and Haematococcus sp. was 17.77, 22.34, 27.55 and 34.22 % larger than during the autotrophic growth of these species. Increases in triacylglycerols of up to ten times was observed for Scenedesmus sp. under mixotrophic conditions (using 10 g L?1 glycerol), whereas an increase of 2.28 times was found for Haematococcus sp. The content of saturated fatty acids of Scenedesmus, Chlorella, Haematococcus and Nannochloris was 67.11, 34.63, 23.39 and 24.23 %, and the amount of unsaturated fatty acids was 32.9, 65.06, 79.61 and 75.78 % of total fatty acids, respectively. Growth on technical glycerol of these strains with light produced higher biomass concentrations and lipid content compared with autotrophic growth. The fatty acid content of oils from these species suggests their potential use as biodiesel feedstock.  相似文献   

12.
The potential nutritional value of seven microalgal diets as measured by their ingestibility and digestibility to queen conch Strombus gigas larvae was tested with 30 day old larvae reared at 28 degrees C and fed at 1000 cells x ml(-1). The algae were Tetraselmis suecica, Tetraselmis chuii Isochrysis aff. galbana, Dunaliella tertiolecta, Chlamydomonas coccoides, Chaetoceros sp. and Thalassiosira fluviatilis. Ingestion and digestion were measured by the four nutritional stages studied with epifluorescence microscopy with live larvae. Temporal and absolute indices showed that larvae fed Chaetoceros sp. and T. fluviatilis had lower ingestion and digestion levels. The other algae are recommend to feed S. gigas larvae.  相似文献   

13.
In the present study, different water samples from Red Sea coastal area at Rabigh city, Saudi Arabia were studied for their dominant algal species. Microalgal isolation was carried out based on dilution method and morphologically examined using F/2 as a growth medium. Dry weight and main biochemical composition (protein, carbohydrates, lipids) of all species were performed at the end of the growth, and biodiesel characteristics were estimated. Nannochloropsis sp., Dunaliella sp., Tetraselmis sp., Prorocentrum sp., Chlorella sp., Nitzschia sp., Coscinodiscus sp., and Navicula sp. were the most dominant species in the collected water samples and were used for further evaluation. Nannochloropsis sp. surpassed all other isolates in concern of biomass production with the maximum recorded dry weight of 0.89 g L?1, followed by Dunaliella sp. (0.69 g L?1). The highest crude protein content was observed in Nitzschia sp. (38.21%) and Dunaliella sp. (18.01%), while Nannochloropsis sp. showed 13.38%, with the lowest recorded lipid content in Coscinodiscus sp. (10.09%). Based on the growth, lipid content, and biodiesel characteristics, the present study suggested Dunaliella sp. and Nitzschia sp. as promising candidates for further large-scale biodiesel production.  相似文献   

14.
The taxonomic composition of phytoplankton responsible for primary production on continental shelves has changed episodically through Earth history. Geological correlations suggest that major changes in phytoplankton composition correspond in time to changes in grazing and seawater chemistry. Testing hypotheses that arise from these correlations requires experimentation, and so we carried out a series of experiments in which selected phytoplankton species were grown in treatments that differed with respect to the presence or absence of grazers as well as seawater chemistry. Both protistan (Euplotes sp.) and microarthropod (Acartia tonsa) grazers changed the growth dynamics and biochemical composition of the green alga Tetraselmis suecica, the diatom Thalassiosira weissflogii, and the cyanobacterium Synechococcus sp., increasing the specific growth rate and palatability of the eukaryotic algae, while decreasing or leaving unchanged both parameters in the cyanobacteria. Synechococcus (especially) and Thalassiosira produced toxins effective against the copepod, but ciliate growth was unaffected. Acartia induced a 4-6 fold increase of Si cell quota in the diatom, but Euplotes had no similar effect. The differential growth responses of the eukaryotic algae and cyanobacteria to ciliate grazing may help to explain the apparently coeval radiation of eukaryophagic protists and rise of eukaryotes to ecological prominence as primary producers in Neoproterozoic oceans. The experimental results suggest that phytoplankton responses to the later radiation of microarthropod grazers were clade-specific, and included changes in growth dynamics, toxin synthesis, encystment, and (in diatoms) enhanced Si uptake.  相似文献   

15.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

16.
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.  相似文献   

17.
Marine microalgae were studied as potential resources for the production of biodiesel. Five marine microalgae, Tetraselmis suecica, Phaeodactylum tricornutum, Chaetoceros calcitrans, Isochrysis galbana, and Nannochloropsis oculata were cultured in f/2 media, 12:12 L:D cycle at 20 ± 1°C with a light intensity of 36.3 μmol/m2/sec using a 15-L circular cylindrical photobioreactor. The dry cell weight, specific growth rate, biomass productivity, oil content and fatty acid composition of palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid of microalgae were determined. T. suecica, I. galbana, and N. oculata showed high dry cell weights of 0.58, 0.57, and 0.57 g/L, respectively. The culture period of T. suecica to reach the stationary phase was 9 days. On the other hand, N. oculata showed the longest culture period of 28 days to reach the stationary phase. T. suecica absorbed nitrate at the initial stages of cell growth, decreasing the nitrate concentration to 0.5 mg/L on day-7 of the culture. The highest oil contents were observed in P. tricornutum with a 25.31% dry cell weight and I. galbana with a 23.15% dry cell weight on day-9 after the stationary phase. I. galbana showed 417.33 mg of palmitic acid per g oil and T. suecica showed 235.61 mg of oleic acid per g oil. Stearic acid, linoleic acid, and linolenic acid did not exceed 30.02 mg/g oil in any of the microalgae. T. suecica showed the shortest culture period of 9 days to reach the stationary phase. Therefore, the highest biomass production of 0.58 g/L was obtained and I. galbana showed high biomass production of 0.57 g/ L and oil content of 23.15% of dry cell weight. Therefore, T. suecica and I. galbana can be selected as a potential candidate for the production of biodiesel.  相似文献   

18.
Alternative fuels are receiving considerable attention, especially biodiesel, which is recognized for its environmental benefits. One advantage is its biodegradability. However, biodegradability may allow the fuel to be more susceptible to microbial contamination, especially during storage. The susceptibility to biodeterioration of biodiesel, diesel, and diesel containing 5, 10, and 20% biodiesel was evaluated using fungi isolated from contaminated oil systems. Paecilomyces sp. produced the highest biomass in 20% and 100% biodiesel, while Aspergillus fumigatus grew best in pure biodiesel. Yeasts had the highest rates of degradation, especially Candida silvicola, with 100% degradation of all esters. Rhodotorula sp. showed greatest activity for C18:3 (linolenic acid), at 39.4%, followed by C18:1 (oleic acid) and C16 (palmitic acid), at 21% and 15%, respectively, after 7 days of incubation. The results are relevant for the resolution of the decade-long debate on the increase in diesel biodegradability due to the addition of biodiesel.  相似文献   

19.
Bacteria degrading a very long-chain alkane, n-tetracosane, were isolated from enrichment culture of soil in Okinawa. Phylogenetic analysis of their16S rRNA sequences revealed that they belong to classes Gammaproteobacteria and Actinomycetes. Three isolates belonging to the genera Acinetobacter sp., Pseudomonas sp., and Gordonia sp. showed a stable growth on n-tetracosane and had a wide range of assimilation of aliphatic hydrocarbons from C12 to C30, while not on alkanes shorter than C8. Of the isolates, Gordonia sp. degraded oil tank sludge hydrocarbons efficiently by solving the sludge in a hydrophobic solvent, while Acinetobacter sp. showed little degradation, possibly due to the difference in the mechanism of hydrophobic substrate incorporation between proteobacteria and actinobacteria. The data suggested that non-heme di-iron monooxygenases of the AlkB-type, not bacterial CYP153 type cytochrome P450 alkane hydroxylase, was involved in the alkane degradation.  相似文献   

20.
CO 2 levels in freshwater systems can fluctuate widely, potentially influencing photosynthetic rates and growth of phytoplankton. Given the right conditions, this can lead to bloom formation and affect water quality. This study investigated the acquisition of dissolved inorganic carbon (DIC ) by six species of microalgae, a cyanobacterium Cylindrospermopsis raciborskii , the diatoms Cyclotella sp., Nitzschia sp., and the green algae Stichococcus sp., Staurastrum sp., and Monoraphidium sp., all isolated from a subtropical reservoir in Australia. Carbon acquisition characteristics, specifically the affinity for DIC , internal pH , and internal DIC concentrations were measured. Affinities for CO 2 () ranged between 0.7 and 6 μM CO 2. This was considerably lower than air‐equilibrated surface water CO 2 concentrations, and below reported affinities for CO 2 of RuBisCO suggesting operation of active carbon dioxide concentrating mechanisms (CCM s) in all species. Internal pH was lowest for Cyclotella sp. at 7.19, and highest for Staurastrum sp., at 7.71. At 180 μM external DIC , ratios of internal:external CO 2 ranged from 2.5 for Nitzschia sp. to 14 in C. raciborskii . Internal HCO 3? concentration showed a linear relationship with surface area to biovolume ratio (SA :Vol). We hypothesized that species with a higher SA :Vol suffer more from diffusive escape of CO 2, thus storage of DIC as bicarbonate is favored in these strains. For C. raciborskii , under stratified summer conditions, its strong CCM , and resilient photosynthetic characteristics may contribute to its bloom forming capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号