首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gill  Richard A.  Burke  Ingrid C. 《Plant and Soil》2002,247(2):233-242
The distribution and turnover of plant litter contribute to soil structure, the availability of plant nutrients, and regional budgets of greenhouse gasses. Traditionally, studies of decomposition have focused on the upper soil profile. Other work has shown that temperature, precipitation, and soil texture are important determinates of patterns of decomposition. Since these factors all vary through a soil profile, it has been suggested that decomposition rates may vary with depth in a soil profile. In this work, we examine patterns of root decomposition through a shortgrass steppe soil profile. We buried fresh root litter from Bouteloua gracilis plants in litterbags at 10, 40, 70, and 100 cm. Litterbags were retrieved six times between July 1996 and May 1999. We found that the decomposition rate for fresh root litter was approximately 50% slower at 1 m than it was at 10 cm. After 33 months, 55% of the root mass buried at 10 cm remained, while 72% of the root mass buried at 1 m was still present. This corresponds to a 19-year residence time for roots at 10 cm and a 36-year residence time for roots at 1 m. Mass loss rates decreased linearly from 10 cm to 1 m. Patterns of total carbon and cellulose loss rates followed those of mass loss rates. Roots at 1 m tended to accumulate lignin-like compounds over the course of the experiment. Differences in the stabilization of lignin may be a consequence of differences in microbial community through a shortgrass steppe soil profile.  相似文献   

2.
We conducted a set of in situ incubations to evaluate patterns of N availability among dominant land uses in the shortgrass steppe region of Colorado, USA, and to assess recovery of soil fertility in abandoned fields. Replicated 30 d incubations were performed in 3 sets of native (never cultivated), abandoned (cultivated until 1937), and currently cultivated, fallow fields. Net N mineralization and the percentage of total N that was mineralized increased in the order: native, abandoned, cultivated. Higher soil water content in fallow fields is the most likely reason for greater mineralization in cultivated fields, while higher total organic C and C/N ratios in native and abandoned fields may explain differences in mineralization between these land uses. Recovery of soil organic matter in abandoned fields appears to involve accumulation of soil C and N under perennial plants, but probable methodological artifacts complicate evaluation of the role of individual plants in recovery of N availability. Higher N mineralization and turnover in cultivated fields may make them more susceptible to N losses; recovery of N cycling in abandoned fields appears to involve a return to slower N turnover and tighter N cycling similar to native shortgrass steppe.  相似文献   

3.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   

4.
The shortgrass steppe is co-dominated by two C4perennial grasses, Bouteloua gracilis andBuchloë dactyloides. At our site and throughouteastern Colorado Bouteloua gracilis has higher cover andbiomass than Buchloë dactyloides. We hypothesizedthatthe interaction between seedling recruitment differences and disturbance regimeand tolerance to drought conditions were the most likely causes of the observeddifferences in relative abundances. We used a simulation model to investigatethe relative importance of the three factors. We studied plant biomass of thesetwo species in 18 simulated treatments that resulted from a factorialcombination of seedling recruitment differences, disturbance regime, andtolerance to drought conditions. Analysis of the simulation outputs with ANOVAindicated that biomass of each species responded positively to increases inrecruitment probability. Increasing disturbance frequency favoredBuchloë dactyloides over Boutelouagracills, whereas the susceptibility Buchloëdactyloides to drought favored Boutelouagracilis. The results indicated that differences in droughttoleranceand seedling recruitment probabilities along with their interactions withdisturbance regimes exert a major control on the biomass of the species. In theabsence of or with intermediate disturbance, a higher recruitment probabilityand greater tolerance to drought of Bouteloua gracilisthanBuchloë dactyloides yielded patterns of relativebiomass similar to the patterns observed in the shortgrass steppe.  相似文献   

5.
Root production and root turnover in two dominant species of wet heathlands   总被引:6,自引:0,他引:6  
Summary Root biomass production, root length production and root turnover of Erica tetralix and Molinia caerulea were estimated by sequential core sampling and by observations in permanent minirhizotrons in the field. Root biomass production, estimated by core sampling, was 370 (Erica) and 1080 (Molinia) g m-2 yr-1. This was for both species equal to aboveground production. Assuming steady-state conditions for the root system, root biomass turnover rates (yr-1), estimated by core sampling, were 1.72 (Erica) and 1.27 (Molinia). Root length production of both species, estimated by minirhizotron observations, varied significantly with observation depth. Root length turnover rate (yr-1) of both species did not vary significantly with observation depth and averaged 0.92 in Erica and 2.28 in Molinia. Reasons are given for the discrepancy between the results of the two types of turnover measurements. The data suggest that the replacement of Erica by Molinia in a wet heathland, which occurs when nutrient availability increases, leads to an increased flow of carbon and nutrients into the soil-system. Therefore, there may be a positive feedback between dominance of Molinia and nutrient availability.  相似文献   

6.
Question: What are the plant population‐ and community‐level effects of removal of dominant plant species in the shortgrass steppe? Location: The Shortgrass Steppe Long‐Term Ecological Research site in northern Colorado, USA. Methods: We annually measured plant cover and density by species for 10 years after a one‐time aboveground removal of the dominant perennial grass, Bouteloua gracilis. Removal and control plots (3 m × 3 m) were within grazed and ungrazed locations to assess the influence of grazing on recovery dynamics. Our analyses examined plant species, functional type, and community responses to removal, paying special attention to the dynamics of subdominant and rare species. Results: Basal cover of B. gracilis increased by an average of 1% per year, but there was significantly less plant cover in treatment compared to control plots for 5 years following removal. In contrast to the lower cover in treatment plots, the plant density (number of plants m?2) of certain subdominant perennial grasses, herbaceous perennial and annual forbs, a dwarf shrub, and cactus increased after removal of the dominant species, with no major change in species richness (number of species per 1 m × 1 m) or diversity. Subdominant species were more similar between years than rare species, but dominant removal resulted in significantly lower similarity of the subdominant species in the short term and increased the similarity of rare species in the long term. Conclusions: Removal of B. gracilis, the dominant perennial grass in the shortgrass steppe, increased the absolute density of subdominant plants, but caused little compensation of plant cover by other plants in the community and changes in species diversity.  相似文献   

7.
We evaluated effects of soil texture and disturbance size on the successional dynamics of a semiarid grassland dominated by the perennial bunchgrass, Bouteloua gracilis (H.B.K.) Lag. ex Griffiths. A spatially-explicit gap dynamics simulation model was used to evaluate recovery patterns. The model simulates establishment, growth, and mortality of individual plants on an array of small plots through time at an annual time step. Each simulated disturbance consisted of a grid of plots of the same soil texture interconnected by processes associated with dispersal of B. gracilis seeds. Soil texture was incorporated into the model as effects on seed germination, seedling establishment, and subsequent growth of B. gracilis. Five soil texture classes and five disturbance sizes were simulated.Soil texture was more important to recovery of B. gracilis than either size of a disturbance or location of plots within a disturbance. Constraints on recruitment of seedlings had a greater effect on recovery than constraints associated with plant growth. Fastest recovery occurred on soils with the largest silt content, the variable that affects seedling establishment. Disturbances with slowest recovery were on soils with low silt contents, and either high or low water-holding capacity, the variable that affects plant growth. Biomass and recovery decreased as disturbance size increased, and as distance from a disturbed plot to the edge of the disturbance increased. In most cases, important interactions between soil texture and disturbance size on recovery were not found.  相似文献   

8.
M. M. Moloney  P. E. Pilet 《Planta》1981,153(5):447-452
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA 4-chlorophenoxyacetic acid - EDTA ethylene diamine tetracetic acid - IAA indol-3yl-acetic acid - MCPA 2-methyl-4-chlorophenoxyacetic acid - NAA naphth-1yl-acetic acid - 2-NAA naphth-2yl-acetic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3 diol - TIBA 2,3,5 triiodobenzoic acid - NPA naphthylphthalamic acid - PCIB 4-chlorophenoxyisobutyric acid - PCPP 4-chlorophenoxyisopropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

9.
Conclusions The influence of mechanical soil resistance on shoot growth can be explained qualitatively by its influence on root morphology. When relating ion uptake quantitatively to a certain root parameter (length, surface area, weight), availability of nutrients in the different soil layers must be taken into consideration.  相似文献   

10.
Bouteloua gracilis (blue grama grass) native populations have been shown to be highly variable, however the genetic basis of this variability has not been well established. Determining the extent of genetic variability within and among plant populations have important repercussions for the management and conservation of species, and in particular for those subjected to intensive use such as forage plants. Using RAPD, this study was undertaken to investigate the genetic variability of four B. gracilis native populations developed in three grasslands and one shrubland at the southernmost part of the North American Graminetum in México. Significant differences in grass aboveground production were found among the study sites, while considerable genetic variation within each of the four blue grama populations evaluated was detected. The molecular analysis, based on 55 individuals, revealed a total of 108 scorable repeatable bands, with 99 of them being polymorphic (overall polymorphism= 91.7%). Within every population each individual was genetically distinct and no population-specific bands (fixed marker differences) were identified. Pair-wise Φ ST comparisons indicated that the four blue grama populations examined were significantly different in their genetic constitution (P<0.001). AMOVA revealed that most of the genetic variation detected in Bouteloua gracilis was explained by intra- (88.53%), rather than by inter-population (11.47%) differences. UPGMA based on the Φ ST values indicated that the blue grama population collected from the shrubland displayed the RAPD profiles that most differed among the study sites. Possible causes of these results could reside on intensive grazing reducing, and proper management conserving, the forage production and genetic diversity of blue grama native populations. Our results are consistent with previous studies analyzing population genetic variation in outcrossing grasses and, in particular, with ecological and cytological evidence for a high genetic variability in native populations of B. gracilis. The implications of our findings and prospective studies to be undertaken using molecular tools in the study of blue grama biology and ecology are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We analyzed neighborhood interactions in a natural population of the perennial bunchgrass blue grama (Bouteloua gracilis). Space occupation by individual plants was characterized in terms of neighborhood size. Neighborhood size was defined as the area potentially ‘available’ to an individual, which included the basal area of the plant and the bare area closer to the edges of the plant than to any others. Geographic Information Systems (GIS) were used to describe space partitioning. Growing season performance was evaluated as a function of neighborhood area and neighbor size, controlling for focal plant size. The area of the neighborhood was significant in explaining the remaining variation of allometric relationships between basal area and current vegetative and reproductive performance. In contrast, current performance of focal individuals was not related to the average basal area or the sum of basal areas of adjacent neighbors. Growing season performance was apparently affected by plant spacing, suggesting that competition for spatially distributed resources occurs. The presence of relatively small plants in neighborhoods with a high proportion of bare soil is consistent with the view of a community composed of patches undergoing their own successional dynamics. Competition and disturbances seem to play an important role in this semiarid grassland.  相似文献   

12.
Fine root turnover is a major pathway for carbon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus mandshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turnover. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao’ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were highest in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a−1 for L. gmelinii and 2.7 a−1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the variations of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have different patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species. Transtlated from Journal of Plant Ecology, 2007, 31(2): 333–342 [译自: 植物生态学报]  相似文献   

13.
Competitive abilities of introduced and native grasses   总被引:4,自引:0,他引:4  
Bakker  Jonathan  Wilson  Scott 《Plant Ecology》2001,157(2):119-127
Differencesin competitive ability may explain the maintenance of existing plantpopulationsand the invasion of new areas by plant species. We used field experiments toexamine the competitive responses of Agropyron cristatum(L.) Gaertn., an introduced C3 grass, and Boutelouagracilis (HBK.) Lag., a native C4 grass, and thecompetitive effects of Agropyron-dominated vegetation andsuccessional prairie. We also tested whether the outcome of competitiveinteractions varied with water availability. In each vegetation type,transplants of each species were grown under two levels of competition(presenceor absence of neighboring vegetation) and three levels of water availability(high, medium, or low). Transplant survival, growth, and biomass allocationpatterns were measured. Water availability had no effect on the measuredvariables, suggesting that both species were limited by another resource.Growthrates were affected more by competition, while survival and root: shoot ratiowere affected more by transplant species identity. In the successional prairie,neighboring vegetation suppressed the growth of Agropyrontransplants less than that of Bouteloua transplants,suggesting that Agropyron has a stronger ability to resistcompetitive suppression in that vegetation type. The spread ofAgropyron into surrounding vegetation may relate to itsability to resist competitive suppression. In theAgropyron-dominated vegetation, neighboring vegetationsuppressed the growth of both species by the same extent. However, competitionaccounted for more variation in transplant growth inAgropyron-dominated vegetation than in successionalprairie, suggesting that Agropyron has strong competitiveeffects which hinder plant growth and prevent other species from establishinginAgropyron fields.  相似文献   

14.
We have delineated the spatio-temporal plant assemblages prevailing under contrasting environmental conditions at the southernmost part of the North American Graminetum in central México and discuss the relative importance of these factors in determining plant community structure and composition. 353 line-transect samples were collected during 11 years from exclosures and adjacent grazed areas within three Bouteloua-dominated grasslands and one Acacia schaffneri shrubland and analyzed using TWINSPAN. In addition, eight edaphic variables were utilized to evaluate similarities in soil properties among sites, using unweighted-pair groups method. Results from TWINSPAN were translated into mosaic patterns to show the distribution of communities as a function of environmental factors over time. Under no or moderate grazing, summer precipitation promotes an initial differentiation of vegetation into high, low or average rainfall communities. This situation is altered in grasslands degraded by intensive grazing pressure, where rainfall patterns play a subordinate role to that of livestock herbivory. Soil influences are secondary to those of precipitation and grazing in affecting grassland structure and composition. In shrubland, community stability is related to high floristic and edaphic spatial heterogeneity in the face of climatic variability.  相似文献   

15.
The cycling and volatile loss of N derived from cattle urine at upland and lowland sites within the shortgrass steppe of eastern Colorado was studied, using15N-labelled urea as an N source. Losses of NH 0 3 were determined by direct measurement and by difference. Losses were higher from coarse (27% summer, 12% winter) than from fine textured (0–2%) soils. Immobilization and plant uptake of N accounted for significant amounts of added N. Extrapolating our plot measurements to a typical pasture, using spatially and temporally stratified urine deposition data, losses from upland sites were calculated to be 0.016 g N · m-2 · y-1, while losses from lowland sites were negligible. This resulted in an average loss of 0.011 g N · m-2 · y-1 for a pasture divided 70:30 between uplands and lowlands. The loss of urine N calculated assuming no spatial stratification would be sevenfold higher (0.076 g N · m-2 · y-1). Losses of NH 0 3 from urine, animal biomass removal, and NH2O loss totaled only 0.07 g N · m-2 · y-1 , or about 25% of wet deposition input. We calculated a potential loss of NH 0 3 from senescing vegetation of 0.26 g N · m-2 · y-1, an order of magnitude larger than all other losses combined.  相似文献   

16.
Shay  Jennifer  Kunec  Diane  Dyck  Barbara 《Plant Ecology》2001,155(2):157-167
The net effects of one, two, and three spring burns in consecutive yearson the aboveground biomass, species composition, and soil variables wereassessed in two different mixed-grass prairie sites in south-western Manitoba.Precipitation in the first year was greater than the 30-year average but lowerduring the next three years. The first site (Area 6) was characterized byBouteloua gracilis, Stipa spartea,Selaginella densa and lichens, while the second, somewhatdrier site (Area 10) was dominated by B. gracilis andCarex spp. Each burn treatment was applied to 15 plots inarandom block design. Vegetation and soil data collected following the thirdburnare presented. In general, the effects of repeated burning were more pronouncedin the drier Area 10, where litter was significantly reduced with eachadditional burn. In Area 6, litter was significantly reduced only after threeyears of burning. In both sites, the cumulative effect of fire had nosignificant effect on total standing crop, even after three consecutive yearsofburning. In the drier Area 10, however, the biomass of several componentsshifted such that B. gracilis biomass increasedsignificantly and forb biomass decreased significantly after three burns. Plantcover was also affected more in the drier Area 10. The cover of B.gracilis, the dominant C4 grass, significantly increasedand Carex spp. cover decreased after two burns in thedriersite. In Area 6, the most significant effect of fire was a reduction inSelaginella and lichen cover. Bare ground increased inbothsites as the number of burns increased. There was little change in soilnutrients with burning, but soil moisture somewhat decreased and surfacetemperature significantly increased after three burns.  相似文献   

17.
Use of sodium chloride (NaCl) as a deicing salt results in high concentrations of ions in roadside soils, which decreases seedling emergence in these areas. Greenhouse experiments performed in soil culture tested the efficacy of three soil fertilizers, gypsum (CaSO4), potash (potassium chloride, KCl) and potassium nitrate (KNO3), in alleviating NaCl stress on seedling emergence of three grass species exhibiting a range of salt tolerance, Poa pratensis (Kentucky bluegrass), Bouteloua gracilis (blue grama), and Puccinellia distans (alkali grass). Two-factor factorial designs were utilized for each species-fertilizer combination. Treatments of 5000 mg/L (0.086 M) NaCl with or without fertilizer, in concentrations that were equal to 0.5, 1, and 2 times the molar equivalent of 5000 mg/L NaCl were applied biweekly. Salt stress on Poa pratensis emergence was alleviated by all fertilizers with CaSO4 having the greatest effect in alleviating NaCl stress and potash and potassium nitrate alleviating stress at lower treatment levels. Emergence of Bouteloua gracilis and Puccinellia distans was in most cases negatively effected by soil amendments.  相似文献   

18.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:5,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

19.
Lewis J. Feldman 《Planta》1979,145(4):315-321
Removal of the quiescent center (QC) from the root apex of maize (Zea mays L., cv. Kelvedon 33) initiates a set of events which culiminate in the regeneration of an intact apex with a newly formed QC. Concomitant with the formation of a new QC is a marked reduction in extractable cytokinins in the tissue of the proximal meristem. Replacing the excised QC with a Dowex (acidic cation-exchange resin) bead affects both root growth and QC regeneration. Root growth is inhibited by plain Dowex beads and Dowex beads treated with zeatin; this inhibition is reversed if the beads have been treated with CaCl2 (±zeatin). Dowex beads treated with zeatin delay the formation of a new QC; this effect is the same whether or not the beads also contain CaCl2. The results of this investigation support the notions that cytokinin biosynthesis in roots is a result of activities of both the QC and the proximal meristem, and that cytokinins, at least if supplied exogenously, can play a role in root morphogenesis by delaying the regeneration of the QC.Abbreviations used throughout the text PM proximal meristem - QC quiescent center - RC root cap  相似文献   

20.
H. Maaß  D. Klämbt 《Planta》1981,151(4):353-358
Roots of intact bean plants were supplied with [14C]adenine by pulse-chase experiments. The rate of incorporation of radioactivity into tRNA and oligonucleotides of roots as well as the content of radioactive labeled cytokinin nucleotides in these RNA fractions were determined. On the average, 1/70 of the radioactivity incorporated into tRNA was localized in N6(2isopentenyl)adenosine. The half life of tRNA was estimated to be 65–70 h. Shortly after the pulse period, oligonucleotides contained zeatin riboside at a ratio of 1:800, on the basis of radioactivity. The half life of these oligonucleotides was determined to be about 8 h. The main free radioactive cytokinin of roots and leaves was zeatin. Comparing the rate of degradation of 14C-labeled tRNA and the oligonucleotides of roots and the rate of appearance of radioactive cytokinins in roots and leaves, we found strong indications for their dependency. The results contradict the hypothesis of de novo synthesis of cytokinins in roots of intact bean plants.Abbreviations AMP adenosine monophosphate - IPA N6(2isopentenyl)adenosine - IPAde N6(2isopentenyl)adenosine - Z zeatin - ZR zeatinriboside - TLC thin-layer chromatography - HPLC high performance liquid chromatography Part of the doctoral thesis, Bonn 1980  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号