首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uridine 5′-diphospho-glucose-4-epimerase (UDP-Glc epimerase) catalyses the reversible epimerization of UDP-galactose and UDP-glucose. In contrast to bacteria and yeast, expression of the UDP-Glc epimerase gene in Arabidopsis was found not to be induced by galactose. To elucidate the metabolic role of this enzyme, transgenic Arabidopsis plants expressing the respective cDNA in sense or antisense orientation were constructed, leading to a range of plant lines with different UDP-Glc epimerase activities. No alterations in morphology were observed and the relative amounts of different galactose-containing compounds were not affected if the plants were raised on soil. However, on agar plates in the presence of galactose, the growth of different lines was increasingly repressed with decreasing enzyme activity, and an increase in the UDP-Gal content was observed in parallel, whereas the UDP-Glc content was nearly constant. The amount of galactose in the cell wall was increased in plants with low UDP-Glc epimerase activity grown on galactose, whereas the cellulose content in the leaves was not altered. Furthermore, starch determined at different times of the day was highly abundant in plants with low UDP-Glc epimerase activity in the presence of galactose. It is proposed that low endogenous UDP-Glc epimerase activity is responsible for the galactose toxicity of the wild-type. Possible mechanisms by which the starch content might be modulated are discussed.  相似文献   

2.
Summary A group of ompA mutants of Escherichia coli K12 are described which were sensitive to bacteriophage K3 in a background wild-type for lipopolysaccharide (LPS). With mutant LPS in vivo (lacking some core sugar residues), however, the ompA mutations gave resistance to K3. Outer membrane levels of OmpA protein were normal or near-normal when the mutations resided in either wild-type or mutant LPS backgrounds. Strains in which the mutations occurred in a wild-type LPS background adsorbed K3 phage at the same initial rate and to the same extent as a wild-type strain, but the efficiency of plaquing of the adsorbed K3 was reduced to 25–50% of wild-type levels. Under conditions where a wild-type strain irreversibly adsorbed over 90% of available phage K3 within 3 min, double mutants (ompA mutant, LPS mutant) left 90% of the phage viable after 1h. The 10% of inactivated phage did not form plaques.  相似文献   

3.
The general transducing phage P22 attacks only smooth (S) Salmonella with O antigen 12, determined by the oligosaccharide repeating unit constituting the distal part of the somatic lipopolysaccharide (LPS) side chain; non-S mutants, whose LPS contain few or no O repeating units, appear to be resistant. Auxotrophic non-S mutants of Salmonella typhimurium LT2 were tested as transductional recipients. Some transductants (0.5 to 5% as many as from S recipients) were obtained from most semirough recipients, either of class D (presumed leaky rouA mutants) or of a class due to mutation near his (presumed leaky rouB mutants), and from recipients lacking uridine diphosphogalactose epimerase or phosphomannose isomerase. Transductants were not obtained from several rouA, rouB, "heptose-negative," and glucose-1-transferase mutants, nor from most semirough class C mutants, whose LPS side chains each bear a single O oligosaccharide unit. Most transductants evoked from non-S recipients by temperate (c(+)) phage P22 were nonlysogenic, and virulent P22.c2 phage was about as effective as P22.c(+) in transduction to non-S recipients; probably all P22 transducing particles neither lysogenize nor kill. The extended-host-range mutant P22h gave qualitatively similar results,but evoked 5- to 30-fold more transductants from some non-S recipients than did P22. Probably, the LPS of non-S mutants susceptible to transduction contains a few O-specific oligosaccharide units, conferring a slight ability to adsorb P22 and a greater ability to adsorb P22h.  相似文献   

4.
Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King’s B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.  相似文献   

5.
Defined mutants of the galactose biosynthetic (Leloir) pathway were employed to investigate lipopolysaccharide (LPS) oligosaccharide expression in Haemophilus influenzae type b strain Eagan. The structures of the low-molecular-mass LPS glycoforms from strains with mutations in the genes that encode galactose epimerase (galE) and galactose kinase (galK) were determined by NMR spectroscopy on O- and N-deacylated and dephosphorylated LPS-backbone, and O-deacylated oligosaccharide samples in conjunction with electrospray mass spectrometric, glycose and methylation analyses. The structural profile of LPS glycoforms from the galK mutant was found to be identical to that of the galactose and glucose-containing Hex5 glycoform previously identified in the parent strain [Masoud, H.; Moxon, E. R.; Martin, A.; Krajcarski, D.; Richards, J. C. Biochemistry1997, 36, 2091-2103]. LPS from the H. influenzae strain bearing mutations in both galK and galE (galE/galK double mutant) was devoid of galactose. In the double mutant, Hex3 and Hex4 glycoforms containing di- and tri-glucan side chains from the central heptose of the triheptosyl inner-core unit were identified as the major glycoforms. The triglucoside chain extension, β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, identified in the Hex4 glycoform has not been previously reported as a structural element of H. influenzae LPS. In the parent strain, it is the galactose-containing trisaccharide, β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, and further extended analogues thereof, that substitute the central heptose. When grown in galactose deficient media, the galE single mutant was found to expresses the same population of LPS glycoforms as the double mutant.  相似文献   

6.
Bacteriophage E79 was shown to interact with the lipopolysaccharide (LPS) of Pseudomonas aeruginosa strain PAO. LPS isolated from an E79-sensitive, smooth strain inactivated the phage, exhibiting a Phl50 value (concentration of LPS that caused a 50% decrease in the titer of phage during 1 h of incubation at 37 degrees C) of 0.04 microgram/ml, whereas the LPS isolated from a rough mutant derived from the wild type showed no neutralizing activity towards E79. EDTA and sodium deoxycholate were demonstrated to abolish the neutralizing capacity of the smooth LPS. One E79 receptor site was shown to be equivalent to 10(-16) g of LPS.  相似文献   

7.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

8.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

9.
Resistance of Salmonella typhimurium mutants to galactose death   总被引:5,自引:2,他引:3  
A class of galactose-resistant mutants has been derived from strains of Salmonella typhimurium which are defective in uridine diphosphoglucose-4-epimerase. Resistant strains are phenotypically similar to parent organisms but do not lyse in the presence of galactose. Low levels of functional epimerase can be detected in induced cells grown at 20 C but not at 37 C, and acid is not produced from galactose. Sufficient galactose is synthesized at reduced temperatures to fabricate smooth lipopolysaccharide and acceptor sites for phage P22 from galactose-deficient media. The leaky nature of these mutants may account for resistance to galactose death by maintaining galactose metabolites at a subcritical level. Glucose protects sensitive strains by control of levels of toxic metabolites by catabolite repression.  相似文献   

10.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

11.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

12.
A clone that complements mutations in Yersinia enterocolitica lipopolysaccharide (LPS) core biosynthesis was isolated, and the DNA sequence of the clone was determined. Three complete open reading frames and one partial open reading frame were located on the cloned DNA fragment. The first, partial, open reading frame had homology to the rfbK gene. The remaining reading frames had homology to galE, rol, and gsk. Analysis of the galE homolog indicates that although it can complement an Escherichia coli galE mutant, its primary function in Y. enterocolitica is not in the production of UDP galactose but, instead, some other nucleotide sugar required for LPS biosynthesis. This gene has been renamed lse, for LPS sugar epimerase. The rol homolog has been demonstrated to have a role in Y. enterocolitica serotype 0:8 O-polysaccharide antigen chain length determination. An additional galE homolog has been identified in Y. enterocolitica by homology to the E. coli gene. The product of this gene has UDP galactose 4-epimerase activity in both E. coli and Y. enterocolitica. This gene is linked to the other genes of the galactose utilization pathway, similar to what is seen in other members of the family Enterobacteriaceae. Although Y. enterocolitica 0:8 strains are reported to have galactose as a constituent of LPS, a strain containing a mutation in this galE gene does not exhibit any LPS defects.  相似文献   

13.
UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.  相似文献   

14.
We investigated the phi PLS27 receptor in Pseudomonas aeruginosa strain PAO lipopolysaccharide (LPS) by analyzing a resistant mutant. This mutant, which was designated AK1282, had the most defective LPS yet reported for a P. aeruginosa rough mutant; this LPS contained only lipid A, 2-keto-3-deoxyoctonate, heptose, and alanine as major components. In addition, this LPS lacked galactosamine, which is present in the inner core of the LPS of other rough mutants. The loss of galactosamine but only a small decrease in the alanine content indicated that the core of strain PAO LPS differed from the core structure which has been suggested for the LPS of other well-characterized P. aeruginosa strains. Our analysis also indicated that galactosamine residues may be crucial for phi PLS27 receptor activity of the LPS. Electrodialysis of LPS and conversion to salt forms (sodium or triethylamine) influenced the phage-inactivating capacity of the LPS, as did the medium in which the inactivation occurred; experiments performed in 1/10-strength broth resulted in much lower PhI50 (concentration of LPS causing a 50% decrease in the titer of phage during 1 h of incubation at 37 degrees C) values than experiments performed in regular-strength broth. Sonication of the LPS also increased the phage-inactivating capacities of the LPS preparations.  相似文献   

15.
The gene encoding nucleosidediphosphate kinase (ndk) was located at 55 units on the Salmonella typhimurium chromosome. The ndk locus was 83% cotransducible with hisS and 2% cotransducible with glyA in phage P22-mediated crosses. A nucleosidediphosphate kinase mutant that produced only 10% of the wild-type enzyme activity (ndk-1) grew normally and produced a heat-labile enzyme.  相似文献   

16.
Mutations from moderate (class I) to high (class III) ampicillin resistance in a male and a female strain of Escherichia coli K-12 have been found to be accompanied by surface alterations, first demonstrated as hindrance in the formation of mating pairs. These changes have now been studied with the ribonucleic acid phage MS2, and especially with the "female-specific" phage phiW. Several class III mutations in male and female strains were found to make the cells susceptible to phage phiW and to reduce their abilities to form mating pairs. Spontaneous phage phiW-resistant mutants isolated from class III strains were found also to have acquired changes in ampicillin resistance and ability to form mating pairs. One mutant had reverted to parental class I type in all three properties. Lipopolysaccharides (LPS) prepared from phiW-sensitive class III strains inactivated the phage in vitro, whereas LPS from phage-resistant strains had no effect. Carbohydrate analyses of LPS preparations showed that two class III mutants, compared to their parental strains, had lost significant parts of the rhamnose, galactose, and glucose from the LPS. One of the phage phiW-resistant mutants showed a partial restoration of its carbohydrate composition. Other phiW-resistant mutants showed, instead, further losses of carbohydrates in their LPS. It is suggested that genes exist which simultaneously mediate a female-specific mating site, ampicillin resistance, and the receptors for phage phiW.  相似文献   

17.
Transport of 6-deoxyglucose in Saccharomyces cerevisiae.   总被引:16,自引:10,他引:6  
The uptake of 6-deoxyglucose was measured in wild-type Saccharomyces cerevisiae, in a double mutant strain lacking activity for hexokinases A and B (hxkl hxk2), in a triple mutant strain lacking activity for both hexokinases and glucokinase (hxkl hxk2 glk), and in the triple mutant with high levels of activity of single kinases restored by introduction of the cloned genes. In the wild-type strain, uptake of the glucose analog showed two components, with Km values of ca. 20 mM ("high affinity") and 250 mM ("low affinity"), respectively. The double mutant also had high- and low-affinity components, but the triple mutant showed only low-affinity uptake. Reintroduction of the single kinases to the triple mutant restored high-affinity uptake. (Other experiments on 6-deoxyglucose uptake are also presented, including the apparent use of the galactose transport system when induced.) These results show that the recent implication of the kinases in transport of glucose (L.F. Bisson and D.G. Fraenkel, Proc. Natl. Acad. Sci. U.S.A. 80:1730-1734, 1983) applies equally to the nonmetabolized analog 6-deoxyglucose and suggests that the role of the kinases in transport is not merely a consequence of metabolism of the transported compound.  相似文献   

18.
Helicobacter pylori NCTC11637 expresses a lipopolysaccharide (LPS) that comprises an O antigen side-chain with structural homology to the human blood group antigen Lewis X (Le(x)). The role of this molecule in adhesion of H. pylori to gastric epithelial cells was investigated. Mutants expressing truncated LPS structures were generated through insertional mutagenesis of rfbM and galE; genes encode GDP mannose pyrophosphorylase and galactose epimerase respectively. Compositional and structural analysis revealed that the galE mutant expressed a rough LPS that lacked an O antigen side-chain. In contrast, an O antigen side-chain was still synthesized by the rfbM mutant, but it lacked fucose and no longer reacted with anti-Le(x) monoclonal antibodies (Mabs). The ability of these mutants to bind to paraffin-embedded sections from the antrum region of a human stomach was assessed. Adhesion of the wild type was characterized by tropic binding to the apical surface of mucosal epithelial cells and cells lining gastric pits. In contrast, both the rfbM and galE mutants failed to demonstrate tropic binding and adhered to the tissue surface in a haphazard manner. These results indicate that LPS and, more specifically, Le(x) structures in the O antigen side-chain play an important role in targeting H. pylori to specific cell lineages within the gastric mucosa. The role of Le(x) in this interaction was confirmed by the tropic binding of synthetic Le(x), conjugated to latex beads, to gastric tissue. The observed pattern of adhesion was indistinguishable from that of wild-type H. pylori.  相似文献   

19.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

20.
Epimerase-deficiency galactosemia results from the impairment of UDP-galactose 4'-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism. Originally identified as a clinically benign "peripheral" condition with enzyme impairment restricted to circulating blood cells, GALE deficiency was later demonstrated also to exist in a rare but clinically severe "generalized" form, with enzyme impairment affecting a range of tissues. Isolated cases of clinically and/or biochemically intermediate cases of epimerase deficiency have also been reported. We report here studies of 10 patients who, in the neonatal period, received the diagnosis of hemolysate epimerase deficiency. We have characterized these patients with regard to three parameters: (1) GALE activity in transformed lymphoblasts, representing a "nonperipheral" tissue, (2) metabolic sensitivity of those lymphoblasts to galactose challenge in culture, and (3) evidence of normal versus abnormal galactose metabolism in the patients themselves. Our results demonstrate two important points. First, whereas some of the patients studied exhibited near-normal levels of GALE activity in lymphoblasts, consistent with a diagnosis of peripheral epimerase deficiency, many did not. We detected a spectrum of GALE activity levels ranging from 15%-64% of control levels, demonstrating that epimerase deficiency is not a binary condition; it is a continuum disorder. Second, lymphoblasts demonstrating the most severe reduction in GALE activity also demonstrated abnormal metabolite levels in the presence of external galactose and, in some cases, also in the absence of galactose. These abnormalities included elevated galactose-1P, elevated UDP-galactose, and deficient UDP-glucose. Moreover, some of the patients themselves also demonstrated metabolic abnormalities, both on and off galactose-restricted diet. Long-term follow-up studies of these and other patients will be required to elucidate the clinical significance of these biochemical abnormalities and the potential impact of dietary intervention on outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号