首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the α-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

2.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the alpha-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

3.
Abstract

Lipid bilayer plays a crucial role in folding of membrane peptides and their stabilization in the membrane-bound state. Correct treatment of the media effects is thus essential for realistic simulations of peptides in bilayers. Previously (Volynsky et al., 1999), we proposed an efficient solvation model which mimics heterogeneous membrane-water system. The model is based on combined employment of atomic solvation parameters for water and hydrocarbon, which approximate hydrated headgroups and acyl chains of lipids, respectively. In this study, the model is employed in non-restrained Monte Carlo simulations of several peptides: totally apolar 20-residue poly-L-Leu, hydrophobic peptide with polar edges, and strongly amphiphilic pep-tide. The principal goals are: to explore energy landscape of these peptides in membrane; to characterize the structures of low-energy states and their orientations with respect to the bilayer. Simulations were performed starting from different structures (unordered or helical) and orientations. It was found that the membrane environment significantly promotes an α-helical conformation for all the peptides, while their energetically favourable orientations are quite different. Thus, poly-Leu was immobilized inside the membrane, the hydrophobic peptide with polar termini adapted transbilayer orientation, whereas the amphiphilic peptide stayed on the lipid-water interface in peripherial orientation. Energy barriers between different states were characterized. The computational results were compared with the experimental structural data.  相似文献   

4.
We describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting alpha-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides-poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation-were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of alpha-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed.  相似文献   

5.
H-bonding in protein hydration revisited   总被引:1,自引:0,他引:1  
H-bonding between protein surface polar/charged groups and water is one of the key factors of protein hydration. Here, we introduce an Accessible Surface Area (ASA) model for computationally efficient estimation of a free energy of water-protein H-bonding at any given protein conformation. The free energy of water-protein H-bonds is estimated using empirical formulas describing probabilities of hydrogen bond formation that were derived from molecular dynamics simulations of water molecules at the surface of a small protein, Crambin, from the Abyssinian cabbage (Crambe abyssinica) seed. The results suggest that atomic solvation parameters (ASP) widely used in continuum hydration models might be dependent on ASA for polar/charged atoms under consideration. The predictions of the model are found to be in qualitative agreement with the available experimental data on model compounds. This model combines the computational speed of ASA potential, with the high resolution of more sophisticated solvation methods.  相似文献   

6.
Understanding the solvation of amino acids in biomembranes is an important step to better explain membrane protein folding. Several experimental studies have shown that polar residues are both common and important in transmembrane segments, which means they have to be solvated in the hydrophobic membrane, at least until helices have aggregated to form integral proteins. In this work, we have used computer simulations to unravel these interactions on the atomic level, and classify intramembrane solvation properties of amino acids. Simulations have been performed for systematic mutations in poly-Leu helices, including not only each amino acid type, but also every z-position in a model helix. Interestingly, many polar or charged residues do not desolvate completely, but rather retain hydration by snorkeling or pulling in water/headgroups--even to the extent where many of them exist in a microscopic polar environment, with hydration levels corresponding well to experimental hydrophobicity scales. This suggests that even for polar/charged residues a large part of solvation cost is due to entropy, not enthalpy loss. Both hydration level and hydrogen bonding exhibit clear position-dependence. Basic side chains cause much less membrane distortion than acidic, since they are able to form hydrogen bonds with carbonyl groups instead of water or headgroups. This preference is supported by sequence statistics, where basic residues have increased relative occurrence at carbonyl z-coordinates. Snorkeling effects and N-/C-terminal orientation bias are directly observed, which significantly reduces the effective thickness of the hydrophobic core. Aromatic side chains intercalate efficiently with lipid chains (improving Trp/Tyr anchoring to the interface) and Ser/Thr residues are stabilized by hydroxyl groups sharing hydrogen bonds to backbone oxygens.  相似文献   

7.
All-atom force fields are now routinely used for more detailed understanding of protein folding mechanisms. However, it has been pointed out that use of all-atom force fields does not guarantee more accurate representations of proteins; in fact, sometimes it even leads to biased structural distributions. Indeed, several issues remain to be solved in force field developments, such as accurate treatment of implicit solvation for efficient conformational sampling and proper treatment of backbone interactions for secondary structure propensities. In this study, we first investigate the quality of several recently improved backbone interaction schemes in AMBER for folding simulations of a beta-hairpin peptide, and further study their influences on the peptide's folding mechanism. Due to the significant number of simulations needed for a thorough analysis of tested force fields, the implicit Poisson-Boltzmann solvent was used in all simulations. The chosen implicit solvent was found to be reasonable for studies of secondary structures based on a set of simulations of both alpha-helical and beta-hairpin peptides with the TIP3P explicit solvent as benchmark. Replica exchange molecular dynamics was also utilized for further efficient conformational sampling. Among the tested AMBER force fields, ff03 and a revised ff99 force field were found to produce structural and thermodynamic data in comparably good agreement with the experiment. However, detailed folding pathways, such as the order of backbone hydrogen bond zipping and the existence of intermediate states, are different between the two force fields, leading to force field-dependent folding mechanisms.  相似文献   

8.
Effective energy function for proteins in solution   总被引:23,自引:0,他引:23  
Lazaridis T  Karplus M 《Proteins》1999,35(2):133-152
A Gaussian solvent-exclusion model for the solvation free energy is developed. It is based on theoretical considerations and parametrized with experimental data. When combined with the CHARMM 19 polar hydrogen energy function, it provides an effective energy function (EEF1) for proteins in solution. The solvation model assumes that the solvation free energy of a protein molecule is a sum of group contributions, which are determined from values for small model compounds. For charged groups, the self-energy contribution is accounted for primarily by the exclusion model. Ionic side-chains are neutralized, and a distance-dependent dielectric constant is used to approximate the charge-charge interactions in solution. The resulting EEF1 is subjected to a number of tests. Molecular dynamics simulations at room temperature of several proteins in their native conformation are performed, and stable trajectories are obtained. The deviations from the experimental structures are similar to those observed in explicit water simulations. The calculated enthalpy of unfolding of a polyalanine helix is found to be in good agreement with experimental data. Results reported elsewhere show that EEF1 clearly distinguishes correctly from incorrectly folded proteins, both in static energy evaluations and in molecular dynamics simulations and that unfolding pathways obtained by high-temperature molecular dynamics simulations agree with those obtained by explicit water simulations. Thus, this energy function appears to provide a realistic first approximation to the effective energy hypersurface of proteins.  相似文献   

9.
The folding (unfolding) pathway of ubiquitin is probed using all-atom molecular dynamics simulations. We dissect the folding pathway using two techniques: first, we probe the folding pathway of ubiquitin by calculating the evolution of structural properties over time and second, we identify the rate determining transition state for folding. The structural properties that we look at are hydrophobic solvent accessible surface area (SASA) and Calpha-root-mean-square deviation (rmsd). These properties on their own tell us relatively little about the folding pathway of ubiquitin; however, when plotted against each other, they become powerful tools for dissecting ubiquitin's folding mechanism. Plots of Calpha-rmsd against SASA serve as a phase space trajectories for the folding of ubiquitin. In this study, these plots show that ubiquitin folds to the native state via the population of an intermediate state. This is shown by an initial hydrophobic collapse phase followed by a second phase of secondary structure arrangement. Analysis of the structure of the intermediate state shows that it is a collapsed species with very little secondary structure. In reconciling these observations with recent experimental data, the transition that we observe in our simulations from the unfolded state (U) to the intermediate state (I) most likely occurs in the dead-time of the stopped flow instrument. The folding pathway of ubiquitin is probed further by identification of the rate-determining transition state for folding. The method used for this is essential dynamics, which utilizes a principal component analysis (PCA) on the atomic fluctuations throughout the simulation. The five transition state structures identified in silico are in good agreement with the experimentally determined transition state. The calculation of phi-values from the structures generated in the simulations is also carried out and it shows a good correlation with the experimentally measured values. An initial analysis of the denatured state shows that it is compact with fluctuating regions of nonnative secondary structure. It is found that the compactness in the denatured state is due to the burial of some hydrophobic residues. We conclude by looking at a correlation between folding kinetics and residual structure in the denatured state. A hierarchical folding mechanism is then proposed for ubiquitin.  相似文献   

10.
Abstract

Several approaches to the treatment of solvent effects based on continuum models are reviewed and a new method based on occupied atomic volumes (occupancies) is proposed and tested. The new method describes protein-water interactions in terms of atomic solvation parameters, which represent the solvation free energy per unit of volume. These parameters were determined for six different atoms types, using experimental free energies of solvation. The method was implemented in the GROMOS and PRESTO molecular simulation program suites. Simulations with the solvation term require 20-50% more CPU time than the corresponding vacuum simulations and are approximately 20 times faster than explicit water simulations. The method and parameters were tested by carrying out 200 ps simulations of BPTI in water, in vacuo, and with the solvation term. The performance of the solvation term was assessed by comparing the structures and energies from the solvation simulations with the equivalent quantities derived from several BPTI crystal structures and from the explicit water and vacuum simulations. The model structures were evaluated in terms of exposed total surface, buried and exposed polar surfaces, secondary structure preservation, number of hydrogen bonds, energy contributions, and positional deviations from BPTI crystal structures. Vacuum simulations produced unrealistic structures with respect to all criteria applied. The structures resulting from the simulations with explicit water were closer to the 5PTI crystal structure, although part of the secondary structure dissolved. The simulations with the effective solvation term produce structures that are normal according to all evaluations and in most respects are remarkably similar to the 5PTI crystal structure despite considerable positional fluctuations during the simulations. The segments where the model and crystal structures differ are known to be flexible and the observed difference may be physically realistic. The effective solvation term based on occupancies is not only very efficient in terms of computer time but also results in meaningful structural properties for BPTI. It may therefore be generally useful in molecular dynamics of macromolecules.  相似文献   

11.
Ab initio folding of proteins with all-atom discrete molecular dynamics   总被引:3,自引:0,他引:3  
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. We performed folding simulations of six small proteins (20-60 residues) with distinct native structures by the replica exchange method. In all cases, native or near-native states were reached in simulations. For three small proteins, multiple folding transitions are observed, and the computationally characterized thermodynamics are in qualitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes and applied to protein engineering and design of protein-protein interactions.  相似文献   

12.
Atomic solvation parameters (ASP) are widely used to estimate the solvation contribution to the thermodynamic stability of proteins as well as the free energy of association for protein-ligand complexes. They are also included in several molecular mechanics computer programs. In this work, a total of eight atomic solvation parametric sets has been employed to calculate the solvation contribution to the free energy of folding delta Gs for 17 proteins. A linear correlation between delta Gs and the number of residues in each protein was found for each ASP set. The calculations also revealed a great variety in the absolute value and in the sign of delta Gs values such that certain ASP sets predicted the unfolded state to be more stable than the folded, whereas others yield precisely the opposite. Further, the solvation contribution to the free energy of association of helix pairs and to the disassociation of loops (connection between secondary structural elements in proteins) from the protein tertiary structures were computed for each of the eight ASP sets and discrepancies were evident among them.  相似文献   

13.
Zhou R 《Proteins》2003,53(2):148-161
The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models.  相似文献   

14.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

15.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

16.
Avbelj F  Baldwin RL 《Proteins》2006,63(2):283-289
The principle of group additivity is a standard feature of analyses of the energetics of protein folding, but it is known that it may not always be valid for the polar peptide group. The neighboring residue effect shows that group additivity is not strictly valid for a heteropeptide. We show here that group additivity fails seriously for peptide groups close to either peptide end, even for a homopeptide that has blocked end groups with no formal charges involved. The failure of group additivity is caused by the electrostatic character of the solvation of peptide polar groups and is illustrated with values of the electrostatic solvation free energy (ESF) calculated by DelPhi. Solvation free energies and enthalpies are known experimentally for monoamides and are often used to model the solvation of peptide groups, but ESF results show that monoamide values are very different from those of peptide groups. A main cause of the difference is that peptide solvation depends on the dipole-dipole interactions made between adjacent peptide groups, which vary with peptide conformation. Ligands that interact with the peptide backbone by an electrostatic mechanism could show a similar peptide end effect, and hydrogen exchange results from the literature confirm that exchange rates are position-dependent close to peptide ends.  相似文献   

17.
Shimizu S  Chan HS 《Proteins》2002,48(1):15-30
Potentials of mean force (PMFs) of three-body hydrophobic association are investigated to gain insight into similar processes in protein folding. Free energy landscapes obtained from explicit simulations of three methanes in water are compared with that predicted by popular implicit-solvent effective potentials for the study of proteins. Explicit-water simulations show that for an extended range of three-methane configurations, hydrophobic association at 25 degrees C under atmospheric pressure is mostly anti-cooperative, that is, less favorable than if the interaction free energies were pairwise additive. Effects of free energy nonadditivity on the kinetic path of association and the temperature dependence of additivity are explored by using a three-methane system and simplified chain models. The prevalence of anti-cooperativity under ambient conditions suggests that driving forces other than hydrophobicity also play critical roles in protein thermodynamic cooperativity. We evaluate the effectiveness of several implicit-solvent potentials in mimicking explicit water simulated three-body PMFs. The favorability of the contact free energy minimum is found to be drastically overestimated by solvent accessible surface area (SASA). Both the SASA and a volume-based Gaussian solvent exclusion model fail to predict the desolvation barrier. However, this barrier is qualitatively captured by the molecular surface area model and a recent "hydrophobic force field." None of the implicit-solvent models tested are accurate for the entire range of three-methane configurations and several other thermodynamic signatures considered.  相似文献   

18.
Amino acids in peptides and proteins display distinct preferences for alpha-helical, beta-strand, and other conformational states. Various physicochemical reasons for these preferences have been suggested: conformational entropy, steric factors, hydrophobic effect, and backbone electrostatics; however, the issue remains controversial. It has been proposed recently that the side-chain-dependent solvent screening of the local and non-local backbone electrostatic interactions primarily determines the preferences not only for the alpha-helical but also for all other main-chain conformational states. Side-chains modulate the electrostatic screening of backbone interactions by excluding the solvent from the vicinity of main-chain polar atoms. The deficiency of this electrostatic screening model of amino acid preferences is that the relationships between the main-chain electrostatics and the amino acid preferences have been demonstrated for a limited set of six non-polar amino acid types in proteins only. Here, these relationships are determined for all amino acid types in tripeptides, dekapeptides, and proteins. The solvation free energies of polar backbone atoms are approximated by the electrostatic contributions calculated by the finite difference Poisson-Boltzmann and the Langevin dipoles methods. The results show that the average solvation free energy of main-chain polar atoms depends strongly on backbone conformation, shape of side-chains, and exposure to solvent. The equilibrium between the low-energy beta-strand conformation of an amino acid (anti-parallel alignment of backbone dipole moments) and the high-energy alpha conformation (parallel alignment of backbone dipole moments) is strongly influenced by the solvation of backbone polar atoms. The free energy cost of reaching the alpha conformation is by approximately 1.5 kcal/mol smaller for residues with short side-chains than it is for the large beta-branched amino acid residues. This free energy difference is comparable to those obtained experimentally by mutation studies and is thus large enough to account for the distinct preferences of amino acid residues. The screening coefficients gamma(local)(r) and gamma(non-local)(r) correlate with the solvation effects for 19 amino acid types with the coefficients between 0.698 to 0.851, depending on the type of calculation and on the set of point atomic charges used. The screening coefficients gamma(local)(r) increase with the level of burial of amino acids in proteins, converging to 1.0 for the completely buried amino acid residues. The backbone solvation free energies of amino acid residues involved in strong hydrogen bonding (for example: in the middle of an alpha-helix) are small. The hydrogen bonded backbone is thus more hydrophobic than the peptide groups in random coil. The alpha-helix forming preference of alanine is attributed to the relatively small free energy cost of reaching the high-energy alpha-helix conformation. These results confirm that the side-chain-dependent solvent screening of the backbone electrostatic interactions is the dominant factor in determining amino acid conformational preferences.  相似文献   

19.
Im W  Feig M  Brooks CL 《Biophysical journal》2003,85(5):2900-2918
Exploiting recent developments in generalized Born (GB) electrostatics theory, we have reformulated the calculation of the self-electrostatic solvation energy to account for the influence of biological membranes. Consistent with continuum Poisson-Boltzmann (PB) electrostatics, the membrane is approximated as an solvent-inaccessible infinite planar low-dielectric slab. The present membrane GB model closely reproduces the PB electrostatic solvation energy profile across the membrane. The nonpolar contribution to the solvation energy is taken to be proportional to the solvent-exposed surface area (SA) with a phenomenological surface tension coefficient. The proposed membrane GB/SA model requires minor modifications of the pre-existing GB model and appears to be quite efficient. By combining this implicit model for the solvent/bilayer environment with advanced computational sampling methods, like replica-exchange molecular dynamics, we are able to fold and assemble helical membrane peptides. We examine the reliability of this model and approach by applications to three membrane peptides: melittin from bee venom, the transmembrane domain of the M2 protein from Influenza A (M2-TMP), and the transmembrane domain of glycophorin A (GpA). In the context of these proteins, we explore the role of biological membranes (represented as a low-dielectric medium) in affecting the conformational changes in melittin, the tilt of transmembrane peptides with respect to the membrane normal (M2-TMP), helix-to-helix interactions in membranes (GpA), and the prediction of the configuration of transmembrane helical bundles (GpA). The present method is found to perform well in each of these cases and is anticipated to be useful in the study of folding and assembly of membrane proteins as well as in structure refinement and modeling of membrane proteins where a limited number of experimental observables are available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号