首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper describes the identification of two major components of the lateral elements of synaptonemal complexes of the rat by immunocytochemical techniques. We prepared monoclonal antibodies against synaptonemal complexes (SCs) by immunization of mice with purified SCs. One of these antibodies, II52F10, reacts with a 30 and a 33 kDa polypeptide, which are major components of purified SCs. Using this antibody, we studied the localization of its antigens light microscopically, by means of the indirect immunoperoxidase technique, as well as ultrastructurally, by means of the immunogold labeling technique. The immunolocalization was carried out on whole-mount preparations of lysed spermatocytes. The antibody reacts with paired as well as unpaired segments of zygotene, pachytene and diplotene SCs. In light microscopic preparations, the attachment plaques, particularly those of late pachytene and diplotene SCs, also appear to react strongly. In electron micrographs the lateral elements in paired as well as unpaired segments could be seen to react. No reaction was observed in the attachment plaques; however, in late pachytene and diplotene SCs the swollen terminal segments of the lateral elements did react with the antibody. Thus, we conclude that a 30 and a 33 kDa polypeptide make part of the lateral elements of synaptonemal complexes of the rat.  相似文献   

2.
A nuclear carbohydrate-binding protein with a molecular mass of 67 kDa (CBP67), which is specific for glucose residues, was purified to essential homogeneity from rat liver nuclear extracts. This protein could also be isolated from nuclear ribonucleoprotein (RNP) complexes by extraction in the presence of 0.6 M or 2 M NaCl, but it was absent in polysomal RNP complex. The binding of the purified protein, which has an isoelectric point of 7.3, to glucose-containing glycoconjugates depends on the presence of Ca2+ and Mg2+. Using closed nuclear envelope vesicles as a system to study nuclear transport of RNA, it was shown that both entrapped polysomal mRNA and nuclear RNA precursors are readily exported from the vesicles in an ATP-dependent manner. The transport was unidirectional and strongly promoted by the poly(A) segment attached to these RNAs. In contrast, nuclear RNP complexes entrapped into the vesicles together with glucose-conjugated bovine serum albumin or nucleoplasmin, or bird nest glycoprotein, were not exported into the extravesicular space. However, transport of nuclear RNP complexes could be achieved in the presence of glucose or after co-addition of a glucose-recognizing lectin from Pellina semitubulosa. In Western blots, radioiodinated CBP67 binds to an 80-kDa polypeptide both in isolated rat liver nuclear envelopes and pore-complex laminae. From these results we postulate that CBP67 may direct nuclear RNP complexes to the nuclear pore.  相似文献   

3.
A radioiodinated, photoactivable synthetic nonapeptide corresponding to the nuclear location signal (NLS) of SV40 large T antigen has been used in photolabelling reactions with purified mouse liver nuclei, nuclear envelopes and other cellular fractions, to identify specific NLS-binding proteins which may be involved in selective transport of karyophilic proteins. SDS-polyacrylamide gel analysis of photolabelled products demonstrates that a 60 kDa nuclear protein and four nuclear envelope proteins (67, 60, 53 and 47 kDa) bind specifically to the native NLS and not to a mutant NLS or unrelated sequences. This binding shows saturation kinetics, with highest affinity of the NLS for the 60 and 67 kDa proteins. The nuclear 60 kDa NLS-binding protein is identical to the nuclear envelope 60 kDa NLS-binding protein by two-dimensional gel analysis of labelled proteins. Biochemical fractionation of labelled nuclear envelopes suggests that the 53 and 47 kDa proteins are peripheral membrane proteins whereas the 67 and 60 kDa proteins can be localized to the pore complex. The NLS also binds to solubilized 67, 60, 53 and 47 kDa proteins but with decreased affinity. Our results suggest that one of the early steps in selective nuclear transport of proteins may be the recognition of the NLS by the 60 kDa and/or 67 kDa binding proteins present in the nuclear pore complex.  相似文献   

4.
5.
This paper describes the light microscopy (LM) and electron microscopy (EM) localization of synaptonemal complex (SC) antigens in oocytes of rats. For this purpose, we used monoclonal antibodies (Mabs) that recognize components of 30 + 33, 125, and 190 kDa antigens of SCs of rat spermatocytes. The LM localization was performed by immunofluorescence and the EM localization by immunogold staining. The reaction of the Mabs with oocytes was similar to the reaction with spermatocytes, but weaker. The 30 + 33 kDa as well as the 190 kDa antigens could always be demonstrated if axial elements of the SC were present, irrespective of whether these were paired or unpaired. Thus, these antigens could be detected from leptotene--early zygotene until diplotene. The 190-kDa antigen appeared in a diffuse manner just before the appearance of the 30 + 33 kDa antigens. The 30 + 33 kDa antigens were not only detected in the axial elements of SCs but also in characteristic aggregates, which appeared in zygotene and persisted until after the SCs had disappeared. Such aggregates had rarely been observed in spermatocytes. The 125 kDa antigen was only present in the tripartite segments of SCs, at the inner edge of the lateral elements. Thus, the reaction of the Mab against the 125 kDa antigen was detectable in zygotene, pachytene, and very early diplotene. It appeared later than 30 + 33 kDa and 190 kDa antigens and it disappeared earlier. We found that several steps of the immunostaining procedure could cause variation in the intensity of the Mab reaction.  相似文献   

6.
The lateral elements of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (M(r)S) of 30,000 and 33,000. After one-dimensional separation of SC proteins on polyacrylamide-sodium dodecyl sulfate gels, these components show up as two broad bands. These bands contain closely related proteins, as judged from their peptide maps and immunological reactivity. Using affinity-purified polyclonal anti-30,000- and anti-33,000-M(r) component antibodies, we isolated a cDNA encoding at least one of the 30,000- or 33,000-M(r) SC components. The protein predicted from the nucleotide sequence of the cDNA, called SCP3 (for synaptonemal complex protein 3), has a molecular mass of 29.7 kDa and a pI value of 9.4. It has a potential nucleotide binding site and contains stretches that are predicted to be capable of forming coiled-coil structures. In the male rat, the gene encoding SCP3 is transcribed exclusively in the testis. SCP3 has significant amino acid similarity to the pM1 protein, which is one of the predicted products of an X-linked lymphocyte-regulated gene family of the mouse: there are 63% amino acid sequence similarity and 35% amino acid identity between the SCP3 and pM1 proteins. However, SCP3 differs from pM1 in several respects, and whether the proteins fulfill related functions is still an open question.  相似文献   

7.
Monoclonal antibody II52F10 was elicited against purified synaptonemal complexes (SCs); it recognizes two major components of the lateral elements of SCs, namely an Mr=30 000 and an Mr=33000 protein. We studied the distribution of the antigens of II52F10 within tissues and cells of the male rat by immunoblot analysis and immuno-cytochemical techniques. Nuclear proteins from various cell types, including spermatogonia and spermatids, did not react with antibody II52F10 on immunoblots; the same holds for proteins from isolated mitotic chromosomes. As expected, an Mr=30 000 and an Mr=33 000 protein from spermatocyte nuclei did react with the antibody. In cryostat sections of liver, brain, muscle and gut we could not detect any reaction with II52F10. In the testis the reaction was confined to SCs or SC fragments. Partly on the basis of indirect evidence we identified the antigen-containing cells as zygotene up to and including post-diffuse diplotene spermatocytes. The persistence of some antigen-containing fragments in the earliest stages of spermatids could not be excluded. We conclude that the lateral elements (LEs) of SCs are not assembled by rearrangement of pre-existing components of the nucleus: at least two of their major components are newly synthesized, presumably during zygotene. Furthermore we conclude partly from indirect evidence that the major components of the LEs of SCs are not involved in the chromosome condensation processes that take place during the earliest stages of meiotic prophase.Abbreviations BSA bovine serum albumin - CE central element - FITC fluorescein isothiocyanate - LE lateral element - PBS phosphate-buffered saline (140 mM NaCl, 10 mM sodium phosphate, pH 7.3) - SC synaptonemal complex - TBST Tris-buffered saline with Tween (50 mM Tris-HCl, pH 7.4, 500 mM NaCl, 0.05% Tween-20)  相似文献   

8.
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab E2-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS--albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small non-nuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex.  相似文献   

9.
The δ-endo toxin proteins from Bacillus thuringiensis which kill the larvae of various scarabaeid beetles such as Anomala cuprea, A. rufocuprea and Popillia japonica were purified by DEAE ion exchange chromatography. A protein with a molecular size of 130 kDa was purified. During the purification a minor peak was also detected which was estimated to be 67 kDa by SDS-PAGE. Both 130 and 67 kDa proteins showed larvicidal activity against A. cuprea. The lethal concentration of the 130 kDa protein which killed 50% of the larvae tested (LC50) against A. cuprea was 2 μg g1 compost. A comparison by SDS-PAGE of the V8 protease digestion pattern of the 130 and 67 kDa larvicidal proteins showed that proteolytic resistant core peptides of approximately 60 kDa molecular size were resulted. The N -terminus amino acid sequence of the 130 and 67 kDa proteins was determined to be NH2-XXPNNQNEYEIIDAL and NH2-XSRNPGTFI, respectively, which is not identical to the sequence of CryIA, CryIB, CryIC and CryIII proteins.  相似文献   

10.
采用表面铺展-SDS处理、硝酸银和磷钨酸(Phosphotungsticacid,PTA)染色电镜技术,研究了褐家鼠精母细胞中常染色体联会复合体(Synaptonemacomplex,SC)的发育及偶线期节(Zygotenenodule,ZN)。在褐家鼠精母细胞的细线期,常染色体轴心(Axialcores,ACs)已形成,同源轴心在空间上靠近,偶线期SCs开始形成,到粗线期SCs完全形成,于双线期SCs开始解体。在双线期除了个别SCs侧生组分分开外,大多数SCs发生碎片化(fragmentation).在偶线期未配对的ACs和SCs侧生组分及中央组分上均发现电子密度高的球形或椭圆形的节状结构──偶线期节,ZNss在同源染色体配对过程中起很重要的作用。  相似文献   

11.
After completing their functioning, synaptonemal complexes (SCs) degrade during the diplotene stage. In the pollen mother cells of rye Secale cereale L., this occurs through the formation of gaps in lateral elements of the SCs and the shortening of fragments of SCs until their complete disappearance. However, when contrasting SCs with silver nitrate solution at a pH 3.5–4.5, these gaps appear to be filled with threads associated with SC lateral elements. As the diplotene stage proceeds and gradual degradation of SC fragments continues, these threads turn into submicroscopic spirals. In this study, we found that the threads and spirals associated with degrading synaptonemal complexes are stained by antibodies to the ASY1 protein of Arabidopsis thaliana lateral elements and thus are degradation products of the lateral elements of SCs.  相似文献   

12.
In the axial elements of synaptonemal complexes (SCs) of the rat, major protein components have been identified, with relative electrophoretic mobilities (M rs) of 30 000-33 000 and 190 000. Using monoclonal anti-SC antibodies, we isolated cDNA fragments which encode the 190 000 M r component of rat SCs. The translation product predicted from the nucleotide sequence of the cDNA, called SCP2 (for synaptonemal complex protein 2), is a basic protein (pI = 8.0) with a molecular mass of 173 kDa. At the C-terminus, a stretch of approximately 50 amino acid residues is predicted to be capable of forming coiled-coil structures. SCP2 contains two clusters of S/T-P motifs, which are common in DNA-binding proteins. These clusters flank the central, most basic part of the protein (pI = 9.5). Three of the S/T-P motifs are potential target sites for p34(cdc2) protein kinase. In addition, SCP2 has eight potential cAMP/cGMP-dependent protein kinase target sites. The gene encoding SCP2 is transcribed specifically in the testis, in meiotic prophase cells. At the amino acid sequence and secondary structural level, SCP2 shows some similarity to the Red1 protein, which is involved in meiotic recombination and the assembly of axial elements of SCs in yeast. We speculate that SCP2 is a DNA-binding protein involved in the structural organization of meiotic prophase chromosomes.  相似文献   

13.
Electron microscopy of spread maize pachytene synaptonemal complexes   总被引:2,自引:1,他引:1  
C. B. Gillies 《Chromosoma》1981,83(5):575-591
The Counce-Meyer microspreading technique for animal synaptonemal complexes (SCs) has been adapted to allow spreading of the SCs of maize pachytene microsporocytes for examination in the electron microscope (EM). The spread nuclei were well dispersed and flattened, and unstained SCs could be seen with light microscope (LM) phase optics. After PTA or ammoniacal silver staining, the SCs and kinetochores were readily recognized in the EM. Variable degrees of asynapsis, stretching of the SCs, and nonhomologous synapsis of lateral elements were noted, and cases of interlocking of lateral elements or SCs were not uncommon. Distinct lens-shaped thickenings of one or both lateral elements were observed at numerous sites along the SC in most nuclei. — The yield of well spread, complete nuclei, although not high, was sufficient to allow karyotypes to be prepared, based on relative SC lengths and arm ratios. The karyotypes agreed well with published EM and LM determinations, establishing the accuracy of the spreading technique for maize. However, considerable variation in absolute lengths of the SCs was noted. To evaluate the utility of the technique for cytogenetic investigations, two paracentric inversions, and two reciprocal translocations were spread and examined in the EM. The breakpoints estimated from measurements of spread SCs were in agreement with LM determinations.  相似文献   

14.
This study describes composition and localization of several substructures of the synaptonemal complex (SC) using different techniques. The techniques which were used were surface spreading, critical point drying of isolated SCs, and sectioning of Lowicryl embedded testis material. The lateral elements (LEs) of the SC appear to be composed of three lateral substructures: two morphologically identical major strands and a third strand which is considerably thinner. The thinner strand is localized on the inner side of the two major strands of the lateral element. In late pachytene/early diplotene stages when the SC starts to disintegrate more than three strands can be observed in the LEs. A model is presented and the function of the different substructures is speculated upon.  相似文献   

15.
Synaptonemal complex antigen location and conservation   总被引:19,自引:3,他引:16       下载免费PDF全文
The axial cores of chromosomes in the meiotic prophase nuclei of most sexually reproducing organisms play a pivotal role in the arrangement of chromatin, in the synapsis of homologous chromosomes, in the process of genetic recombination, and in the disjunction of chromosomes. We report an immunogold analysis of the axial cores and the synaptonemal complexes (SC) using two mouse monoclonal antibodies raised against isolated rat SCs. In Western blots of purified SCs, antibody II52F10 recognizes a 30- and a 33-kD peptide (Heyting, C., P. B. Moens, W. van Raamsdonk, A. J. J. Dietrich, A. C. G. Vink, and E. J. W. Redeker, 1987, Eur. J. Cell Biol., 43: 148-154). In spreads of rat spermatocyte nuclei it produces gold grains over the cores of autosomal and sex chromosomes. The cores label lightly during the chromosome pairing stage (zygotene) of early meiotic prophase and they become more intensely labeled when they are parallel aligned as the lateral elements of the SC during pachytene (55 grains/micron SC). Statistical analysis of electronically recorded gold grain positions shows that the two means of the bimodal gold grain distribution coincide with the centers of the lateral elements. At diplotene, when the cores separate, the antigen is still detected along the length of the core and the enlarged ends are heavily labeled. Shadow-cast SC preparations show that recombination nodules are not labeled. The continued presence suggests that the antigens serve a continuing function in the cores, such as chromatin binding, and/or structural integrity. Antibody III15B8, which does not recognize the 30- and 33-kD peptides, produces gold grains predominantly between the lateral elements. The grain distribution is bimodal with the mean of each peak just inside the pairing face of the lateral element. The antigen is present where and while the cores of the homologous chromosomes are paired. From the location and the timing, it is assumed that the antigen recognized by III15B8 functions in chromosome pairing at meiotic prophase. The two anti-rat SC antibodies label rat and mouse SCs but not rabbit or dog SCs. A positive control using human CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) anti-centromere serum gives equivalent labeling of SC centromeres in the rat, mouse, rabbit, and dog. It is concluded that the SC antigens recognized by II52F10 and III15B8 are not widely conserved. The two antibodies do not bind to cellular or nuclear components of somatic cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
To identify synaptonemal complex (SC) proteins in Lilium longiflorum (lily), monoclonal antibodies were generated using mice immunized with isolated pachytene nuclei. While most of the resulting monoclonal antibodies recognized nucleolar or chromatin proteins, one monoclonal antibody (anti-LE) was found that binds to lateral elements. Anti-LE bound more to lateral elements of SCs digested with DNase than to lateral elements that had not been digested with DNase. The opposite pattern of labeling was observed using monoclonal antibodies to lily chromatin and nucleolar proteins. These results indicate that anti-LE is specifically recognizing lateral element proteins and not chromatin or nucleolar proteins surrounding the lateral elements. On immunoblots, anti-LE binds to three pachytene nuclear proteins (Mr 60000, 66000 and 70000), two tetrad (early microspore) nuclear proteins (Mr 60000 and 70000), and two root tip nuclear proteins (Mr 52000 and 60000). However, anti-LE does not bind to proteins from leaf nuclei. Of these four tissues, leaf is the only one that does not have actively dividing cells. This observation suggests that at least some SC proteins are related to nuclear proteins from mitotically active cells.  相似文献   

17.
18.
Rat outer dense fibres were isolated from cauda epididymal spermatozoa using mechanical and chemical dissection methods. Sperm tail isolation procedures were monitored by phase-contrast microscopy and the purity of the outer dense fibres was verified by electron microscopy. SDS-PAGE of isolated outer dense fibres revealed at least nine Coomassie brilliant blue stained bands, and 12 silver staining bands. The most abundant proteins were a large band between 26.5 and 32.5 kDa, and 84 kDa, 21.5 kDa and 15.5 kDa bands. The amino acid composition of the total rat outer dense fibres and seven isolated proteins showed similar compositions, being abundant in aspartic and glutamic acid, serine, glycine and leucine. However, the content of cysteine and proline was highly variable among the isolated proteins. Immunofluorescence microscopy demonstrated that a polyclonal antiserum to isolated rat outer dense fibres showed positive staining localized to the mid-piece of rat and rabbit spermatozoa. However, there was crossreactivity in the principal piece as well as the mid-piece of the human spermatozoa. The antiserum also showed crossreactivity in the perforatorium of rat sperm heads and the acrosome and equatorial segment of rabbit sperm heads. These data indicate that it is technically possible to isolate proteins from the outer dense fibres that will enable further studies of the amino acid sequences of sperm tail proteins.  相似文献   

19.
肌动蛋白存在于金黄地鼠(Mesocricetus auratus)联会复合体中   总被引:1,自引:1,他引:0  
以金黄地鼠精母细胞为材料,以抗肌动蛋白抗体为探针,应用免疫荧光和免疫胶体金技术对SC有无肌动蛋白的问题进行了研究。免疫荧光结果表明:经抗肌动蛋白抗体标记后,减数分裂粗线期标本中SC发出特异性荧光,说明肌动蛋白存在于SC中。免疫电镜结果表明:实验组SC的胶体金颗粒密度远高于对照组的金颗粒密度,说明SC含有肌动蛋白。观察到,常染色体SC和性染色体SC以及偶线期和粗线期SC中都含有肌动蛋白,肌动蛋白分布于SC的端部和侧生组分上,代表肌动蛋白的胶体金颗粒在SC上往往成簇存在。对SC含有肌动蛋白的意义进行了讨论。  相似文献   

20.
We previously purified a nuclear localization signal binding protein, NBP60, from rat liver (1993,J. Biochem.113, 308–313). In this study, the subcellular localization of NBP60 was examined using anti-NBP60. Most NBP60 was found to be localized in the nuclear envelope fraction of rat liver obtained on cell fractionation followed by immunoblotting. Staining of the nuclei of cultured cells by the antibody was observed on immunofluorescence microscopy. NBP60 was widely detected in rat nuclear fractions prepared from other tissues and also in nuclei of cultured cells derived from other species. It was shown by immunoelectron microscopy that most NBP60 is present in the nuclear envelope and at least some of that is present on nuclear pore complexes. Although NBP60 was localized in the nuclear envelope in interphase cells, it diffused into the cytoplasm in the mitotic phase. The purified NBP60 was highly phosphorylated by a cdc2 mitotic kinase, whereas nuclear pore proteins p144, p62, p60, and p54 were not phosphorylated by the kinase directly. NBP60 was also phosphorylated by protein kinase A, calmodulin-dependent protein kinase II, and casein kinase II. The phosphorylation of NBP60 by cdc2 kinase and/or the other kinases may be related to the change in the protein's location during the mitotic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号