首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A dynamic dilution system for producing low mixing ratios of methyl bromide (MeBr) and a sensitive analytical technique were used to study the uptake of MeBr by various soils. MeBr was removed within minutes from vials incubated with soils and ~10 parts per billion by volume of MeBr. Killed controls did not consume MeBr, and a mixture of the broad-spectrum antibiotics chloramphenicol and tetracycline inhibited MeBr uptake by 98%, indicating that all of the uptake of MeBr was biological and by bacteria. Temperature optima for MeBr uptake suggested a biological sink, yet soil moisture and temperature optima varied for different soils, implying that MeBr consumption activity by soil bacteria is diverse. The eucaryotic antibiotic cycloheximide had no effect on MeBr uptake, indicating that soil fungi were not involved in MeBr removal. MeBr consumption did not occur anaerobically. A dynamic flowthrough vial system was used to incubate soils at MeBr mixing ratios as low as those found in the remote atmosphere (5 to 15 parts per trillion by volume [pptv]). Soils consumed MeBr at all mixing ratios tested. Temperate forest and grassy lawn soils consumed MeBr most rapidly (rate constant [k] = 0.5 min−1), yet sandy temperate, boreal, and tropical forest soils also readily consumed MeBr. Amendments of CH4 up to 5% had no effect on MeBr uptake even at CH4:MeBr ratios of 107, and depth profiles of MeBr and CH4 consumption exhibited very different vertical rate optima, suggesting that methanotrophic bacteria, like those presently in culture, do not utilize MeBr when it is at atmospheric mixing ratios. Data acquired with gas flux chambers in the field demonstrated the very rapid in situ consumption of MeBr by soils. Uptake of MeBr at mixing ratios found in the remote atmosphere occurs via aerobic bacterial activity, displays first-order kinetics at mixing ratios from 5 pptv to ~1 part per million per volume, and is rapid enough to account for 25% of the global annual loss of atmospheric MeBr.  相似文献   

2.
Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether   总被引:13,自引:1,他引:13       下载免费PDF全文
We have isolated a mixed bacterial culture (BC-1) which is capable of degrading the gasoline oxygenate methyl t-butyl ether (MTBE). BC-1 was developed from seed microorganisms present in a chemical plant biotreater sludge. This enrichment culture has been maintained in continuous culture treating high concentrations of MTBE (120 to 200 mg/liter) as the sole carbon source in a simple feed containing NH4+, PO43-, Mg2+, and Ca2+ nutrients. The unit had a stable MTBE removal rate when maintained with a long cell retention time (ca. 80 to 90 days); however, when operated at a ≤50-day cell waste rate, loss of MTBE-degrading activity was observed. The following three noteworthy experimental data show that MTBE is biodegraded extensively by BC-1: (i) the continuous (oxygen-sparged) culture was able to sustain a population of autotrophic ammonia-oxidizing bacteria which could nitrify influent NH4+ concentrations at high rates and obtain CO2 (sole carbon source for growth) from the metabolism of the alkyl ether, (ii) BC-1 metabolized radiolabeled either (14CH3O-MTBE) to 14CO2 (40%) and 14C-labeled cells (40%), and (iii) cell suspensions of the culture were capable of degrading (substrate depletion experiments) MTBE to t-butyl alcohol, a primary metabolite of MTBE. BC-1 is a mixed culture containing several bacterial species and is the first culture of its kind which can completely degrade an alkyl ether.  相似文献   

3.
Volume 60, no. 7, p. 2593, abstract, line 11: "radiolabeled either" should read "radiolabeled ether." Page 2594, column 1, line 13 from bottom: "KH(inf2)PO(inf4) (350 pmg/liter)" should read "KH(inf2)PO(inf4) (350 mg/liter)." [This corrects the article on p. 2593 in vol. 60.].  相似文献   

4.
In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination.  相似文献   

5.
Mineralization of [U-14C]methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.  相似文献   

6.
Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flava ENV735 was evaluated. ENV735 grew slowly on MTBE or tert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H2 did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735.  相似文献   

7.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 × 106 cells ml−1 were 0.07, 1.17, and 3.56 μg ml−1 h−1 for initial concentrations of 5, 50, and 500 μg MTBE ml−1, respectively. When incubated with 20 μg of uniformly labeled [14C]MTBE ml−1, strain PM1 converted 46% to 14CO2 and 19% to 14C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE−1. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 μg of MTBE ml−1 added to the core material. The rate of MTBE removal increased with additional inputs of 20 μg of MTBE ml−1. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

8.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

9.
Baboshin  M. A.  Finkelstein  Z. I.  Golovleva  L. A. 《Microbiology》2003,72(2):162-166
The transformation of fluorene by Rhodococcus rhodochrous strain 172 grown on sucrose and Pseudomonas fluorescens strain 26K grown on glycerol was studied as a function of the substrate concentration and the growth phase. Under certain cultivation conditions, fluorene was completely consumed from the medium. The specific transformation rate of fluorene was considerably higher when it was transformed in the presence of the cosubstrates than when it served as the sole carbon source. An approach to the evaluation of the specific transformation rate of fluorene during batch cultivations is proposed.  相似文献   

10.
Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.  相似文献   

11.
Adsorption of hydrogen ions and dye cations by washed bacterial cells shows a reciprocal relationship. Apparently, H-ions and crystal violet ions are held by the cell at the same adsorption centers, and the influence of H+ on basic dye adsorption is one of direct competition or replacement The adsorption of H+ and acid fuchsin is similar in that an increase is noted as the pH of the suspension is lowered.  相似文献   

12.
Several pure strains of rumen bacteria have previously been shown to degrade isolated hemicelluloses from a form insoluble in 80% acidified ethanol to a soluble form, regardless of the eventual ability of the organism to utilize the end products as energy sources. This study was undertaken to determine whether similar hemicellulose degradation or utilization, or both, occurs from intact forages. Fermentations by pure cultures were run to completion by using three maturity stages of alfalfa and two maturity stages of bromegrass as individual substrates. Organisms capable of utilizing xylan or isolated hemicelluloses could degrade and utilize intact forage hemicellulose, with the exception of two strains of Bacteroides ruminicola which were unable to degrade or utilize hemicellulose from grass hays. Intact forage hemicelluloses were extensively degraded by three cellulolytic strains that were unable to use the end products; in general, these strains degraded a considerably greater amount of hemicelluloses than the hemicellulolytic organisms. Hemicellulose degradation or utilization, or both, varied markedly with the different species and strains of bacteria, as well as with the type and maturity stage of the forage. Definite synergism was observed when a degrading nonutilizer was combined with either one of two hemicellulolytic strains on the bromegrass substrates. One hemicellulolytic strain, which could not degrade or utilize any of the intact bromegrass hemicellulose alone, almost completely utilized the end products solubilized by the nonutilizer. Similar synergism, although of lesser magnitude, was observed when alfalfa was used as a substrate.  相似文献   

13.
The growth of yeast cells to high densities at low, but constant, oxygen concentrations is difficult because the cells themselves respire oxygen; hence, as cell mass increases, so does oxygen consumption. To circumvent this problem, we have designed a system consisting of a computer-controlled gas flow train that adjusts oxygen concentration in the gas flow to match cellular demand. It does this by using a proportional-integral-differential algorithm in conjunction with a three-way valve to mix two gases, adjusting their proportions to maintain the desired oxygen concentration. By modeling yeast cell yields at intermediate to low oxygen concentrations, we have found that cellular respiration declines with oxygen concentration, most likely because of a decrease in the expression of genes for respiratory proteins. These lowered rates of oxygen consumption, together with the gas flow system described here, allow the growth of yeast cells to high densities at low oxygen concentrations. This system can also be used to grow cells at any desired oxygen concentration and for regulated shifts between oxygen concentrations.  相似文献   

14.
The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-14C]MTBE was mineralized to 14CO2. Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential.  相似文献   

15.
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.  相似文献   

16.
17.
Studies on the rate and extent of galacturonic acid and isolated pectin digestion were carried out with nine strains of rumen bacteria (Butyrivibrio fibrisolvens H10b and D16f, Bacteroides ruminicola 23 and D31d, Lachnospira multiparus D15d, Peptostreptococcus sp. D43e, B. succinogenes A3c, Ruminococcus flavefaciens B34b, and R. albus 7). Only three strains, 23, D16f, and D31d, utilized galacturonic acid as a sole energy source, whereas all strains except A3c and H10b degraded (solubilized) and utilized purified pectin. Nutrient composition of the basal medium and separate sterilization of the substrate affected the rate and extent of fermentation for both substrates. Pectin degradation and utilization were measured with two maturity stages each of intact bromegrass and alfalfa. For bromegrass I, all strains tested (B34b, 23, D16f, D31d, D15d, and D43e) degraded a considerable amount of pectin and, with the exception of B34b, utilized most of what was degraded. Similar, but lower, results were obtained with bromegrass II, except for the two strains of B. ruminicola, 23 and D31d, which were unable to degrade and utilize pectin from this forage. All strains were able to degrade and utilize pectin from both maturity stages of alfalfa; however, values were considerably lower for strains 23 and D31d. Synergism studies, in which a limited utilizing strain, B34b, was combined with the limited degrading strain, D31d, resulted in a slight increase in degradation and a very marked increase in utilization of the pectin in all four forages. Similar results were obtained on both alfalfa substrates with a combination of strains B34b and D16f; however, no increases were observed with this combination on bromegrass.  相似文献   

18.
The Effect of Monensin on Pure and Mixed Cultures of Rumen Bacteria   总被引:1,自引:2,他引:1  
The antibiotic monensin was added to pure cultures of Bacteroides ruminicola, Selenomonas ruminantium, Anaerovibrio lipolytica and Megasphaera elsdenii. These organisms, representing succinate- and propionate-producing rumen bacteria, were not affected by monensin up to 10 μg/ml. Methanobacterium ruminantium was slightly inhibited by monensin, Butyrivibrio fibrisolvens, Ruminococcus albus and Streptococcus bovis were inhibited to differing extents by monensin at concentrations between 0.1 and 10 μg/ml. Bacteroides succinogenes was inhibited at first by monensin at >0.5 μg/ml but after a prolonged lag phase adapted to grow in the presence of monensin at concentrations below 5 μg/ml.
Monensin (1 μg/ml) almost completely stopped the digestion of chopped straw and dewaxed cotton fibres by rumen contents incubated in vitro. The digestion of grass and powdered filter paper was not significantly reduced under these conditions, but when the concentration of monensin was increased to between 3 and 5 μg/ml, the digestion of these substrates was reduced.  相似文献   

19.
20.
Aspergillus parasiticus and Penicillium rubrum spores at the level of 10(4) to 10(5) / g were completely killed by prolonged exposure to 30 to 45 mg of methyl bromide per liter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号