首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the effect of ischemia-reperfusion (I-R) on pulmonary capillary permeability in isolated rabbit lungs and the roles of xanthine oxidase (XO), aldehyde oxidase (AO), and neutrophils (PMN) in producing this lung injury. Effects of XO and AO were studied by inactivation with a tungsten-enriched diet (0.7 g/kg) and inhibition of XO by allopurinol (100 microM) or AO by menadione (3.5 microM). PMN effects were studied by preventing endothelial adhesion with the monoclonal antibody IB4 (10 microM). Vascular permeability was evaluated by determining the capillary filtration coefficient (Kf,c) measured before and after I-R in all experimental conditions. Reperfusion after 2 h of ischemia significantly increased pulmonary capillary permeability (Kf,c changed from 0.096 +/- 0.014 to 0.213 +/- 0.025 ml.min-1. cmH2O-1.100 g-1), and this increase was blocked by the addition of catalase (50,000 U) at reperfusion (baseline Kf,c was 0.125 +/- 0.023 and 0.116 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). XO inactivation with the tungsten-supplemented diet and XO inhibition with allopurinol prevented the Kf,c increase observed after I-R (0.183 +/- 0.030 to 0.185 +/- 0.033 and 0.126 +/- 0.018 to 0.103 +/- 0.005 ml.min-1.cmH2O-1.100 g-1). Inhibition of AO had no effect on I-R injury (Kf,c 0.108 +/- 0.011 to 0.167 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). Preventing PMN adhesion resulted in significant attenuation of the change in Kf,c associated with I-R (0.112 +/- 0.032 to 0.090 +/- 0.065 ml.min-1.cmH2O-1.100 g-1). We conclude that XO and PMN adherence, but not AO, are involved in the increased capillary permeability associated with I-R.  相似文献   

2.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

4.
Apocynin (4-hydroxy-3-methoxy-acetophenone) inhibits NADPH oxidase in activated polymorphonuclear (PMN) leukocytes, preventing the generation of reactive oxygen species. To determine if apocynin attenuates ischemia-reperfusion lung injury, we examined the effects of apocynin (0.03, 0.3, and 3 mM) in isolated in situ sheep lungs. In diluent-treated lungs, reperfusion with blood (180 min) after 30 min of ischemia (ventilation 28% O(2), 5% CO(2)) caused leukocyte sequestration in the lung and increased vascular permeability [reflection coefficient for albumin (sigma(alb)) 0.47 +/- 0.10, filtration coefficient (K(f)) 0.14 +/- 0.03 g. min(-1). mmHg(-1). 100 g(-1)] compared with nonreperfused lungs (sigma(alb) 0.77 +/- 0. 03, K(f) 0.03 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1); P < 0.05). Apocynin attenuated the increased protein permeability at 0.3 and 3 mM (sigma(alb) 0.69 +/- 0.05 and 0.91 +/- 0.03, respectively, P < 0. 05); K(f) was decreased by 3 mM apocynin (0.05 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Diphenyleneiodonium (DPI, 5 microM), a structurally unrelated inhibitor of NADPH oxidase, worsened injury (K(f) 0.32 +/- 0.07 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Neither apocynin nor DPI affected leukocyte sequestration. Apocynin and DPI inhibited whole blood chemiluminescence and isolated PMN leukocyte-induced resazurin reduction, confirming NADPH oxidase inhibition. Apocynin inhibited pulmonary artery hypertension and perfusate concentrations of cyclooxygenase metabolites, including thromboxane B(2). The cyclooxygenase inhibitor indomethacin had no effect on the increased vascular permeability, suggesting that cyclooxygenase inhibition was not the explanation for the apocynin results. Apocynin prevented ischemia-reperfusion lung injury, but the mechanism of protection remains unclear.  相似文献   

5.
We previously found that increased intravascular pressure decreased ischemic lung injury by a nitric oxide (NO)-dependent mechanism (Becker PM, Buchanan W, and Sylvester JT. J Appl Physiol 84: 803-808, 1998). To determine the role of cyclic nucleotides in this response, we measured the reflection coefficient for albumin (sigma(alb)), fluid flux (), cGMP, and cAMP in ferret lungs subjected to either 45 min ("short"; n = 7) or 180 min ("long") of ventilated ischemia. Long ischemic lungs had "low" (1-2 mmHg, n = 8) or "high" (7-8 mmHg, n = 6) vascular pressure. Other long low lungs were treated with the NO donor (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium -1, 2-diolate (PAPA-NONOate; 5 x 10(-4) M, n = 6) or 8-bromo-cGMP (5 x 10(-4) M, n = 6). Compared with short ischemia, long low ischemia decreased sigma(alb) (0.23 +/- 0.04 vs. 0.73 +/- 0.08; P < 0.05) and increased (1.93 +/- 0.26 vs. 0.58 +/- 0.22 ml. min(-1). 100 g(-1); P < 0.05). High pressure prevented these changes. Lung cGMP decreased by 66% in long compared with short ischemia. Lung cAMP did not change. PAPA-NONOate and 8-bromo-cGMP increased lung cGMP, but only 8-bromo-cGMP decreased permeability. These results suggest that ischemic vascular injury was, in part, mediated by a decrease in cGMP. Increased vascular pressure prevented injury by a cGMP-independent mechanism that could not be mimicked by administration of exogenous NO.  相似文献   

6.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We had previously shown that selective thromboxane synthetase inhibition with furegrelate increases urinary excretion of 6-ketoPGF1 alpha, the hydrolysis product of prostacyclin after stimulation of renal prostaglandin synthesis with furosemide. The present study assessed the functional significance of this "redirection" of prostaglandin formation using a more physiologic stimulus, angiotensin II. Sprague-Dawley rats (n = 27) were fitted with a transabdominal bladder cannula. Five days later they were given angiotensin II (10 mg.kg-1.min-1) by intravenous infusion. After 30 min, an infusion of furegrelate, 2 mg/kg, then 2 mg.kg-1.h-1, (n = 9); indomethacin, 2 mg/kg, then 2 mg.kg-1.h-1 (n = 9); or vehicle, 250 microL, then 0.018 mL/min (n = 9) was begun for 60 min. Clearance of [14C]para-aminohippuric acid was taken as a measure of renal plasma flow. Angiotensin II raised the mean arterial pressure in all groups. Administration of furegrelate or indomethacin did not change mean arterial pressure or heart rate. Angiotensin II reduced [14C]p-aminohippuric acid clearance by about 32% (1.42 +/- 0.18 to 0.97 +/- 0.07 mL.min-1.100 g-1, p less than 0.05). Furegrelate attenuated this renal vasoconstriction (0.97 +/- 0.07 to 1.38 +/- 0.17 mL.min-1.100 g-1, p less than 0.05), while indomethacin increased it by a further 32% (1.78 +/- 0.12 to 1.20 +/- 0.12 mL.min-1.100 g-1, p less than 0.05). Vehicle alone had no effect. Furegrelate reduced serum thromboxane B2 by 90% (6.52 +/- 0.030 to 0.7 +/- 0.21 ng/100 microL, p less than 0.05), while indomethacin reduced it by 73% (5.9 +/- 0.99 to 1.4 +/- 0.20 ng/100 microL, p less than 0.05). We conclude that furegrelate attenuates the renal vasoconstriction of angiotensin II, presumably by enhancing the formation of vasodilator prostaglandins.  相似文献   

9.
We have studied the effect of alveolar hypoxia on fluid filtration characteristics of the pulmonary microcirculation in an in situ left upper lobe preparation with near static flow conditions (20 ml/min). In six dogs (group 1), rate of edema formation (delta W/delta t, where W is weight and t is time) was assessed over a wide range of vascular pressures under two inspired O2 fraction (FIO2) conditions (0.95 and 0.0 with 5% CO2-balance N2 in both cases). delta W/delta t was plotted against vascular pressure, and the best-fit linear regression was obtained. There was no significant difference (paired t test) in either threshold pressure for edema formation [18.3 +/- 1.8 and 17.1 +/- 1.2 (SE) mmHg, respectively] or the slopes (0.067 +/- 0.008 and 0.073 +/- 0.017 g.min-1. mmHg-1.100g-1, respectively). In another seven dogs (group 2), delta W/delta t was obtained at a constant vascular pressure of 40 mmHg under four FIO2 conditions (0.95, 0.21, 0.05, and 0.0, with 5% CO2-balance N2). Delta W/delta t for the four conditions averaged 0.60 +/- 0.11, 0.61 +/- 0.11, 0.61 +/- 0.10, and 0.61 +/- 0.10 (SE) g.min-1.mmHg-1.100g-1, respectively. No significant differences (ANOVA for repeated measures) were noted. We conclude that alveolar hypoxia does not alter the threshold for edema formation or delta W/delta t at a given microvascular pressure.  相似文献   

10.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

11.
Increases in free radicals are believed to play a central role in the development of pulmonary ischemia/reperfusion (I-R) injury, leading to microvascular leakage and deterioration of pulmonary surfactant. Continued ventilation during ischemia offers significant protection against I-R injury, but the impact of alveolar oxygen supply both on lung injury and on radical generation is still unclear. We investigated the influence of hyperoxic (95% O2) and anoxic (0% O2) ventilation during ischemia on alveolar antioxidant status and surfactant properties in isolated rabbit lungs. Normoxic and hyperoxic ventilated, buffer-perfused lungs (n = 5 or 6) and native lungs (n = 6) served as controls. As compared with controls, biophysical and biochemical surfactant properties were not altered in anoxic as well as hyperoxic ventilated ischemic (2, 3, and 4 h) lungs. Assessment of several antioxidants (reduced glutathione (GSH), alpha-tocopherol (vitamin E), retinol (vitamin A), ascorbic acid (vitamin C), uric acid, and plasmalogens (1-O-alkenyl-2-acyl-phospholipids)) in bronchoalveolar lavage fluid (BALF) revealed a significant increase in antioxidant compounds under anoxic and hyperoxic ventilation, with maximum levels occuring after 3 h of ischemia. For example, GSH increased to 5.1 +/- 0.8 microM (mean +/- SE, p <.001) after 3 h of anoxic ventilated ischemia and to 2.7 +/- 0.2 microM (p <.01) after hyperoxic ventilated ischemia compared with native controls (1.3 +/- 0.2 microM), but did not significantly change under anoxic and hyperoxic ventilation alone. In parallel, under ischemic conditions, oxidized glutathione (GSSG) increased during hyperoxic (3 h: 0.81 +/- 0.04 microM, p <.001), but remained unchanged during anoxic (3 h: 0.31 +/- 0.04 microM) ventilation compared with native controls (0.22 +/- 0.02 microM), whereas F2-isoprostanes were elevated under both hyperoxic (3 h: 63 +/- 15 pM, p <.01) and anoxic (3 h: 50 +/- 9 pM, p <.01) ventilation compared with native controls (16 +/- 4 pM). We conclude that oxidative stress is increased in the lung alveolar lining layer during ischemia, during both anoxic and hyperoxic ventilation. This is paralleled by an increase rather than a decrease in alveolar antioxidant levels, suggested to reflect an adaptive response to oxidative stress during ischemia.  相似文献   

12.
The purpose of this study was to assess the influence of regular voluntary exercise in pregnant normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats on 1) uteroplacental perfusion and mean arterial pressure in the resting conscious condition and 2) fetal number, fetal weight, and number of fetal resorptions. WKYs and SHRs were randomly assigned to standard cages [CWKY (n = 10); CSHR (n = 6)] or cages with activity wheels [EWKY (n = 7); ESHR (n = 8)]. EWKYs and ESHRs exercised for 12 wk, and then all rats were bred and experiments were conducted on gestational day 17. Resting blood flow (microspheres), heart rate (HR), and mean arterial pressure (Pa) were measured. No significant difference was found in Pa, HR, uterine blood flow (ESHRs 52 +/- 8 ml.min-1.100 g-1; CSHRs 28 +/- 6 ml.min-1.100 g-1), or maternal placental blood flow (ESHRs, 122 +/- 31 ml.min-1.100 g-1; CSHRs 78 +/- 21 ml.min-1.100 g-1) among the groups. Exercise altered the relationship between maternal placental and uterine blood flow and Pa in the SHR; SHRs with lower Pa maintained higher placental and uterine blood flow after training. Before gestation ESHRs ran on average more kilometers per week than EWKYs (43 +/- 3 vs. 34 +/- 4), but during gestation ESHRs averaged fewer kilometers per week than EWKYs (16 +/- 4 vs. 22 +/- 4). Succinate dehydrogenase activity was higher in the white vastus lateralis (1.02 +/- 0.2 mumol cytochrome c reduced.min-1.g wet wt-1) and vastus intermedius (3.1 +/- 0.5 mumol cytochrome c reduced.min-1.g wet wt-1) muscles of ESHRs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.  相似文献   

14.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

15.
Myocardial oxygen consumption (MVO2) and coronary blood flow (CBF) distribution were studied in 21 isolated, metabolically supported dog hearts. Measurements of MVO2 and CBF distribution were carried out in three different experimental conditions : empty beating heart (EBH), ventricular fibrillation (VF) and high potassium-induced cardiac arrest (CA). MVO2 was approximately the same in EBH and VF (4.09 +/- 0.77 and 4.28 +/- 0.68 ml O2 min-1 100 g-1 respectively), and significantly lower in the group with CA (2.40 +/- 0.18 ml O2 min-1 100 g-1, P less than 0.05). Total CBF showed no significant differences among the three groups (84 +/- 7 ml/min in EBH; 78 +/- 7 ml/min in VF and 83 +/- 7 ml/min in CA). Subendocardial CBF per unit of tissue mass was significantly lower in hearts with VF (0.43 +/- 0.01 ml/min-1 g-1, P less than 0.05) when tested against the other two groups of experiments (0.69 +/- 0.03 ml min-1 g-1 in EBH and 0.65 +/- +/- 0.04 ml min-1 g-1 in CA). This was also reflected in the endo/epi ratio, that was significantly lower in VF (1.41 +/- 0.07, P less than 0.05) with respect to the other two groups (2 +/- 0.09 in EBH and 2.21 +/- 0.07 in CA). From data presented here we can conclude that cardioplegia, even in absence of hypothermia, is a method that will assure myocardial protection providing : (1) a lower subendocardial MVO2; (2) a higher subendocardial CBF, which helps for a prompt recovery during reperfusion.  相似文献   

16.
Ischemia-reperfusion (IR) is a form of oxidant injury known to increase microvascular permeability in the lung. Agents that increase adenosine 3',5'-cyclic monophosphate (cAMP) levels have been shown to have beneficial effects in several models of oxidant lung injury associated with increased microvascular permeability. We investigated the role of adenylate cyclase activation with isoproterenol (ISO) or forskolin (FSK) in reversing the increased microvascular permeability associated with IR. ISO or FSK administered after 45 min of ischemia and 46 min of reperfusion caused a reduction in the capillary filtration coefficient (Kfc) from 1.25 +/- 0.13 to 0.53 +/- 0.08 and 0.55 +/- 0.10 ml.min-1.cmH2O-1.100 g tissue-1, respectively, at 90 min of reperfusion. This reduction in Kfc was accompanied by a rise in perfusate cAMP levels from 16.5 +/- 4.9 and 31.2 +/- 11.9 pmol/ml at 45 min of reperfusion to 444.2 +/- 147.8 and 276.1 +/- 91.0 pmol/ml at 105 min of reperfusion in lungs treated with ISO or FSK, respectively, at 46 min of reperfusion. Dibutyryl cAMP (DBcAMP), a membrane-permeable cAMP analogue, mimicked the permeability effect by reducing Kfc to 0.67 +/- 0.15 at 90 min of reperfusion. Significant hemodynamic changes occurred but were small and cannot explain the observed effect on Kfc. Photomicrographs from lungs treated with ISO or FSK revealed a reversal of the morphological manifestations of increased microvascular permeability. We conclude that the increased microvascular permeability associated with IR can be reversed by ISO, FSK, and DBcAMP and that cAMP produced by the lung contributes to the observed reversal.  相似文献   

17.
Three independent methods were used to estimate filtration coefficient (Kf) in isolated dog lungs perfused with low-hematocrit (Hct) blood. Pulmonary vascular pressure was increased by 12-23 cmH2O to induce fluid filtration. Average Kf (ml.min-1 x cmH2O-1 x 100 g dry wt-1) for six lungs was 0.26 +/- 0.05 (SE) with use of equations describing conservation of optically measured protein labeled with indocyanine green. Good agreement was found when a simplified version of the multiequation theory was applied to the data (0.24 +/- 0.05). Both optical estimates were lower than those predicted by constant slope (0.55 +/- 0.07) or extrapolation (1.20 +/- 0.15) techniques, which are based on changes in total lung weight. Subsequent studies in five dog lungs investigated whether the higher Kf from weight analyses could be caused by prolonged pulmonary vascular filling. We found that 51Cr-labeled red blood cells (RBCs), monitored over the lung, continued to accumulate for 30 min after vascular pressure elevations of 9-16 cmH2O.Kf was determined by subtracting computed vascular filling from total weight change (0.28 +/- 0.06) and by perfusate Hct changes determined from radiolabeled RBCs (0.23 +/- 0.04). These values were similar to those obtained from analysis of optical data with the complete model (0.30 +/- 0.06), the simplified version (0.26 +/- 0.05), and from optically determined perfusate Hct (0.16 +/- 0.03). However, constant slope (0.47 +/- 0.04) and extrapolation (0.57 +/- 0.07) computations of Kf were higher than estimates from the other methods. Our studies indicate that prolonged blood volume changes may accompany vascular pressure elevations and produce overestimates of Kf with standard weight measurement techniques. However, Kf computed from optical measurements is independent of pulmonary blood volume changes.  相似文献   

18.
Dietary restriction without malnutrition prolongs life and has a beneficial effect on age-related diseases and metabolic derangements. To test the effect of food restriction on ethane production rate, ethane exhalation was measured in rats with partial food restriction. Ethane production rate in room air in rats fed 60% of food consumed by ad libitum-fed animals for 2 wk was significantly reduced (3.50 +/- 0.25 vs. 5.21 +/- 0.34 pmol.min-1.100 g body wt-1, P less than 0.01). In 100% oxygen, ethane production in food-restricted rats was not different from that of ad libitum-fed rats (21.81 +/- 1.25 vs. 19.57 +/- 1.89 pmol.min-1.100 g-1). Fifteen hours of fasting compared with ad libitum feeding reduced ethane production modestly in room air (4.37 +/- 0.45 vs. 5.21 +/- 0.34 pmol.min-1.100 g-1) and more significantly in 100% oxygen (12.37 +/- 0.78 vs. 19.57 +/- 1.89 pmol.min-1.100 g-1). Thus, in 100% oxygen, 15 h of fasting, compared with ad libitum feeding, resulted in an approximately 40% decrease in ethane production rate. It is concluded that short-term food restriction significantly reduces ethane exhalation rate in rats when measured in room air.  相似文献   

19.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号