首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA2) contributes to the impaired cardiomyocyte Ca(2+) homeostasis observed in heart failure. We hypothesized that a reduction in SERCA2 also elicits myocardial ER/SR stress responses, including unfolded protein responses (UPR) and cardiomyocyte apoptosis, which may additionally contribute to the pathophysiology of this condition. Left ventricular myocardium from mice with cardiomyocyte-specific tamoxifen-inducible disruption of Serca2 (SERCA2 KO) was compared with aged-matched controls. In SERCA2 KO hearts, SERCA2 protein levels were markedly reduced to 2% of control values at 7 weeks following tamoxifen treatment. Serca2 disruption caused increased abundance of the ER stress-associated proteins CRT, GRP78, PERK, and eIF2α and increased phosphorylation of PERK and eIF2α, indicating UPR induction. Pro-apoptotic signaling was also activated in SERCA2 KO, as the abundance of CHOP, caspase 12, and Bax was increased. Indeed, TUNEL staining revealed an increased fraction of cardiomyocytes undergoing apoptosis in SERCA2 KO. ER-Tracker staining additionally revealed altered ER structure. These findings indicate that reduction in SERCA2 protein abundance is associated with marked ER/SR stress in cardiomyocytes, which induces UPR, apoptosis, and ER/SR structural alterations. This suggests that reduced SERCA2 abundance or function may contribute to the phenotype of heart failure also through induction of ER/SR stress responses.  相似文献   

2.
Calcium signaling phenomena in heart diseases: a perspective   总被引:2,自引:0,他引:2  
Ca2+ is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca2+)i level in situ. The Ca2+ signal inducing contraction in cardiac muscle originates from two sources. Ca2+ enters the cell through voltage dependent Ca2+ channels. This Ca2+ binds to and activates Ca2+ release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca2+ induced Ca2+ release (CICR) process. Entry of Ca2+ with each contraction requires an equal amount of Ca2+ extrusion within a single heartbeat to maintain Ca2+ homeostasis and to ensure relaxation. Cardiac Ca2+ extrusion mechanisms are mainly contributed by Na+/Ca2+ exchanger and ATP dependent Ca2+ pump (Ca2+-ATPase). These transport systems are important determinants of (Ca2+)i level and cardiac contractility. Altered intracellular Ca2+ handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the β-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca2+ release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the β-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca2+ regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca2+ handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.  相似文献   

3.
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus.  相似文献   

4.
A missense mutation in ATP2A1 gene, encoding sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) protein, causes Chianina cattle congenital pseudomyotonia, an exercise-induced impairment of muscle relaxation. Skeletal muscles of affected cattle are characterized by a selective reduction of SERCA1 in sarcoplasmic reticulum membranes. In this study, we provide evidence that the ubiquitin proteasome system is involved in the reduced density of mutated SERCA1. The treatment with MG132, an inhibitor of ubiquitin proteasome system, rescues the expression level and membrane localization of the SERCA1 mutant in a heterologous cellular model. Cells co-transfected with the Ca2+-sensitive probe aequorin show that the rescued SERCA1 mutant exhibits the same ability of wild type to maintain Ca2+ homeostasis within cells. These data have been confirmed by those obtained ex vivo on adult skeletal muscle fibers from a biopsy from a pseudomyotonia-affected subject. Our data show that the mutation generates a protein most likely corrupted in proper folding but not in catalytic activity. Rescue of mutated SERCA1 to sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca2+ concentration and prevent the appearance of pathological signs of cattle pseudomyotonia.  相似文献   

5.
The actuator (A) domain of sarco(endo)plasmic reticulum Ca2+-ATPase not only plays a catalytic role but also undergoes large rotational movements that influence the distant transport sites through connections with transmembrane helices M1 and M2. Here we explore the importance of long helix M2 and its junction with the A domain by disrupting the helix structure and elongating with insertions of five glycine residues. Insertions into the membrane region of M2 and the top junctional segment impair Ca2+ transport despite reasonable ATPase activity, indicating that they are uncoupled. These mutants fail to occlude Ca2+. Those at the top segment also exhibited accelerated phosphoenzyme isomerization E1P → E2P. Insertions into the middle of M2 markedly accelerate E2P hydrolysis and cause strong resistance to inhibition by luminal Ca2+. Insertions along almost the entire M2 region inhibit the dephosphorylated enzyme transition E2 → E1. The results pinpoint which parts of M2 control cytoplasm gating and which are critical for luminal gating at each stage in the transport cycle and suggest that proper gate function requires appropriate interactions, tension, and/or rigidity in the M2 region at appropriate times for coupling with A domain movements and catalysis.  相似文献   

6.
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys27 of PLB was cross-linked to the Ca2+ pump at the cytoplasmic extension of M4 (at or near Lys328) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca2+ or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca2+ affinity conformation of the Ca2+-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca2+-ATPase activity and Ca2+ transport. The results suggest that the inhibitory effect of PLB on Ca2+-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca2+ to the Ca2+ pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca2+ pump are largely unchanged in failing myocardium.  相似文献   

7.
Ca2+ efflux from sarcoplasmic reticulum vesicles was studied by measurements of net Ca2+ uptake, 45Ca2+ flux and hydrolysis of energy-rich phosphate. The maximal Ca2+ uptake capacity (150–200 nmol/mg protein at pH 6.7, 10 mM MgCl2 and μ=0.26) was independent of the nature and concentration of the energy-donating substrate (ATP or carbamyl phosphate) and of temperature (15–35°C), suggesting coupling between influx and efflux of Ca2+. In the presence of high concentrations of ATP, this efflux of Ca2+ was much higher than the passive Ca2+ permeation, measured after ATP or Ca2+ depletion of the reaction medium. Ca2+ efflux was imperceptible at vesicle filling levels below 35–40 nmol Ca2+/mg protein, and uncorrelated to the inhibition of the Ca2+-ATPase by high intravesicular Ca2+ concentrations. Analysis of the data indicated that Ca2+ efflux under our conditions probably is associated with one of the Ca2+-ATPase partial reactions occurring after dephosphorylation, rather than with a reversal of the Ca2+ translocation step in the phosphorylated state of the enzyme. Furthermore, passive Ca2+ permeation may be concurrently reduced during the enzymatically active state. It is proposed that both Ca2+ efflux and passive Ca2+ permeation (Ca2+ outflow) proceed via the same channels which are closed (occluded) during part of the Ca2+-ATPase reaction cycle.  相似文献   

8.
A cytosolic protein fraction, termed CPF-I, derived by (NH4)2 SO4 fractionation of rabbit heart cytosol caused marked inhibition (up to 95%) of ATP-dependent Ca2+ uptake by cardiac sarcoplasmic reticulum. The inhibitory effect of CPF-I was concentration-dependent (50% inhibition with ~ 80–100 μg CPF-I) and heat labile. The inhibitor reduced the velocity of Ca2+ uptake without altering the apparent affinity of the transport system for Ca2+. Concomitant with the inhibition of Ca2+ uptake, Ca2+-sensitive ATP hydrolysis was also inhibited by CPF-I. The inhibitor did not cause release of Ca2+ from Ca2+-preloaded membrane vesicles. The inhibitor activity of CPF-I could be adsorbed to a DEAE cellulose column and could be eluted with a linear gradient of KCl. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum calcium pump in cardiac muscle and raises the intriguing possibility of its participation in the regulation of calcium pump invivo.  相似文献   

9.
Passive Ca2+ permeability of sarcoplasmic reticulum vesicles has been studied after maximal loading with Ca2+ (150–200 nmol/mg protein) in the presence of Ca2+, MgATP and an ATP generating system of limited capacity. Outflow of accumulated Ca2+ in the non-energized state of the system was studied by depletion of the medium of one of the substrates, either MgATP (by complete consumption) or Ca2+ (by complexation with EGTA). It was found that Ca2+ outflow under these conditions is relatively slow and independent of the medium concentration of Ca2+ (5·10?9–5·10?5 M) or MgATP (0.7–730 μM). Outflow curves were steep at the beginning of the outflow phase (30–60 nmol/min per mg protein), and outflow proceeded at a much lower rate below 100 nmol Ca2+/mg protein. Outflow could be completely inhibited by La3+. The Ca2+ release curves are not compatible with simple diffusion, and cannot be accounted for by Ca2+ binding inside the vesicles. Neither are our observations consistent with permeation mediated via the Ca2+ translocation sites involved in active transport. We suggest that non-energized Ca2+ outflow may proceed by a process of ion-exchange through negatively charged, water-filled channels in the membrane, the properties of which are altered by a high intravesicular concentration of Ca2+.  相似文献   

10.
11.
K.S. Cheah  Anne M. Cheah 《BBA》1981,638(1):40-49
Comparative studies were carried out on the Ca2+-transport systems of mitochondria and sarcoplasmic reticulum from longissimus dorsi muscle of genetically selected malignant hyperthermia-prone and normal pigs in order to identify the biochemical lesion responsible for the enhanced release of Ca2+ in the sarcoplasm occurring in porcine malignant hyperthermia. Mitochondria isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs contained a significantly (P < 0.001) higher amount of endogenous long-chain fatty acids. Similar amounts of endogenous mitochondrial phospholipase A2 were observed in both types of pigs, but the total activity in malignant hyperthermia-prone pigs was at least twice that of normal. Spermine, a phospholipase A2 inhibitor, lowered the activity in both types of mitochondria to a similar final level. Mitochondria of malignant hyperthermia-prone pigs showed a significantly (P < 0.001) higher oligomycin-insensitive (Ca2+ + Mg2+)-ATPase activity, but the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase activities were similar in both types of pigs. Sarcoplasmic reticulum isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs showed a significantly higher (Ca2+ + Mg2+)-ATPase activity and a lower rate of Ca2+ uptake; the maximal amount and the rate of Ca2+ uptake by sarcoplasmic reticulum of malignant hyperthermia-prone pigs were half that of normal. Mitochondria from longissimus dorsi muscle of malignant hyperthermia-prone pigs inhibited the Ca2+-transport system of the sarcoplasmic reticulum of longissimus dorsi from both normal and malignant hyperthermia-prone pigs, but mitochondria from normal pigs had no influence on the sarcoplasmic reticulum from either type. Experimental evidence favours the concept that long-chain fatty acids released from skeletal muscle mitochondria by endogenous mitochondrial phospholipase A2 are responsible for the enhanced release of Ca2+ from mitochondria (Cheah, K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84), and also additional release of Ca2+ from sarcoplasmic reticulum into the sarcoplasm during porcine malignant hyperthermia syndrome.  相似文献   

12.
Rapid quench methods were used to determine Ca2+ uptake, ATPase phosphorylation and Pi production in the transient state of Sarcoplasmic Reticulum. It was found that within 20 milliseconds of the addition of ATP maximal levels of phosphorylated enzyme intermediate are reached and an initial burst of Ca2+ uptake is completed. This burst, kinetically distinct from the following transport activity, is related to the phosphorylated intermediate with a molar ratio of two.  相似文献   

13.
The effect of medium Ca2+ concentration upon the concentration and the rate of synthesis of muscle proteins was investigated in chicken pectoralis muscle cultures.There is an easily identifiable class of muscle protein which includes the Ca2+-ATPase of sarcoplasmic reticulum, myosin, troponin C, ATP : creatine phosphotransferase, muscle specific actin, tropomyosin 1 and 2, and muscle hemagglutinin, which show a large increase in concentration during normal development. The increased synthesis of these proteins was inhibited, without inhibition of cell proliferation, in culture media of relatively low Ca2+ concentration, 0.05–0.3 mM, where fusion was prevented. Similar medium Ca2+ concentration was required for the expression of all these proteins, suggesting their coordinate regulation. The proteins are denoted as ‘calcium-modulated proteins’. The increased Ca2+ transport activity of sarcoplasmic reticulum in cultured chicken pectoralis muscle cells during development at 1.8 mM medium calcium concentration represents de novo synthesis of the Ca2+ transport ATPase, as shown by immunoprecipitation, active site labeling and direct identification of the Ca2+ transport ATPase on two-dimensional gel electropherograms of whole muscle homogenates.The concentration and the turnover rate of the majority of the muscle proteins is not affected significantly by medium Ca2+ concentration between 0.06 and 1.8 mM.It is proposed that increase in cytoplasmic free Ca2+ concentration during fusion plays a central role in the regulation of the synthesis of calcium-modulated proteins.  相似文献   

14.
Transport by the synthetic cyclic peptide ionophore CYCLEX-2E (Deber, C.M., Young, M.E.M., and Tom-Kun, J. (1980) Biochemistry 19, 6194–6198), which in contrast to Ca2+ ionophore A23187 contains no ionizable protons, has been studied with respect to Ca2+ and Na+ transport, and the involvement of exchanged, or counter-transported ions during the transport process. CYCLEX-2E was found to equilibrate Na+ and Ca2+ gradients across phospholipid vesicle membranes. Experiments using the indicator dye Arsenazo III established that calcium ions were indeed reaching the aqueous intravesicular compartments. Absence of metal cations in the external buffer slowed, but did not eliminate, the efflux of Ca2+ from phosphatidylcholine vesicles. As an example of its activity in a biological membrane, CYCLEX-2E was shown to be capable of producing Ca2+ efflux from sarcoplasmic reticulum vesicles which had been loaded with Ca2+ in an ATP-dependent manner. The overall results suggest that in transport by synthetic peptide ionophores typified by CYCLEX-2E, electroneutrality is achieved either through (a) peptide-mediated compensating (but not coupled) fluxes of other cations, or where this is not an option, by (b) transmembrane diffusion of permeant ions such as H+, OH?, or Cl?.  相似文献   

15.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

16.
17.
Acetylphosphate produces a definite change in the spectrum of an iodoacetamide spin probe covalently bound to sarcoplasmic reticulum ATPase. The observed change, which is Ca2+ dependent and reversible, is attributed to a protein conformational change occurring during the Ca2+ transport cycle.  相似文献   

18.
The functional expression and distribution of intracellular ATPase (sarco(endo)plasmic reticulum Ca(2+)-ATPase: SERCA) and plasma membrane Ca(2+)-ATPase (PMCA) was analyzed in the developing chick cerebellum. The activity and Ca(2+) uptake increase with development for both ATPases. However, the protein content increases with the stage of development only for SERCA, remaining constant for PMCA. Immunohistochemical assays showed that the ontogenesis of these ATPases goes along with definite stages of cerebellum histogenesis, and is complete at hatching. The SERCA is mainly distributed in Purkinje neurons, whereas the PMCA seems to be expressed initially in climbing fibers, shifting to soma and spiny branchlets of Purkinje cells at late embryonic stages. Granule cells express both ATPases according to their degree of maturity, whereas only PMCA is present in cerebellar glomeruli. These pumps are present in deep nuclei and the choroid plexus, although in this latter tissue their expression declines with development. The spatio-temporal distribution of SERCA and PMCA must be closely related to their association with the development of specific cells and processes of the chick cerebellum.  相似文献   

19.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

20.
Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is the most recently identified phosphoinositide, and its functions have yet to be fully elucidated. Recently, members of our muscle group have shown that PI(3,5)P2 plays an important role in skeletal muscle function by altering Ca(2+) homeostasis. Therefore, we hypothesized that PI(3,5)P2 may also modulate cardiac muscle contractility by altering intracellular Ca(2+) ([Ca(2+)](i)) in cardiac myocytes. We first confirmed that PI(3,5)P2 was present and increased by insulin treatment of cardiomyocytes via immunohistochemistry. To examine the acute effects of PI(3,5)P2 treatment, electrically paced left ventricular muscle strips were incubated with PI(3,5)P2. Treatment with PI(3,5)P2 increased the magnitude of isometric force, the rate of force development, and the area associated with the contractile waveforms. These enhanced contractile responses were also observed in MIP/Mtmr14(-/-) mouse hearts, which we found to have elevated levels of PI(3,5)P2. In cardiac myocytes loaded with fura-2, PI(3,5)P2 produced a robust elevation in [Ca(2+)](i). The PI(3,5)P2-induced elevation of [Ca(2+)](i) was not present in conditions free of extracellular Ca(2+) and was completely blocked by ryanodine. We investigated whether the phosphoinositide acted directly with the Ca(2+) release channels of the sarcoplasmic reticulum (ryanodine receptors; RyR2). PI(3,5)P2 increased [(3)H]ryanodine binding and increased the open probability (P(o)) of single RyR2 channels reconstituted in lipid bilayers. This strongly suggests that the phosphoinositide binds directly to the RyR2 channel. Thus, we provide inaugural evidence that PI(3,5)P2 is a powerful activator of sarcoplasmic reticulum Ca(2+) release and thereby modulates cardiac contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号